Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Specific heat capacity

From Wikipedia, the free encyclopedia
Heat required to raise the temperature of a given unit of mass of a substance
For the specific heat capacities of particular substances, seeTable of specific heat capacities.
Specific heat capacity
Other names
Specific heat
Common symbols
c
SI unitJ⋅kg−1⋅K−1
InSI base unitsm2⋅K−1⋅s−2
Intensive?Yes
DimensionL2⋅T−2⋅Θ−1
Thermodynamics
The classicalCarnot heat engine

Inthermodynamics, thespecific heat capacity (symbolc) of a substance is the amount ofheat that must be added to one unit of mass of the substance in order to cause an increase of one unit intemperature. It is also referred to asmassic heat capacity or as thespecific heat. More formally it is theheat capacity of a sample of the substance divided by themass of the sample.[1] TheSI unit of specific heat capacity isjoule perkelvin perkilogram, J⋅kg−1⋅K−1.[2] For example, the heat required to raise the temperature of1 kg ofwater by1 K is4184 joules, so the specific heat capacity of water is4184 J⋅kg−1⋅K−1.[3]

Specific heat capacity often varies with temperature, and is different for eachstate of matter. Liquid water has one of the highest specific heat capacities among common substances, about4184 J⋅kg−1⋅K−1 at 20 °C, but that of ice, just below 0 °C, is only2093 J⋅kg−1⋅K−1. The specific heat capacities ofiron,granite, andhydrogen gas are about 449 J⋅kg−1⋅K−1, 790 J⋅kg−1⋅K−1, and 14300 J⋅kg−1⋅K−1, respectively.[4] While the substance is undergoing aphase transition, such as melting or boiling, its specific heat capacity is technically undefined, because the heat goes into changing its state rather than raising its temperature.

The specific heat capacity of a substance, especially a gas, may be significantly higher when it is allowed to expand as it is heated (specific heat capacityat constant pressure) than when it is heated in a closed vessel that prevents expansion (specific heat capacityat constant volume). These two values are usually denoted bycp{\displaystyle c_{p}} andcV{\displaystyle c_{V}}, respectively; their quotientγ=cp/cV{\displaystyle \gamma =c_{p}/c_{V}} is theheat capacity ratio.

The termspecific heat may also refer to the ratio between the specific heat capacities of a substance at a given temperature and of a reference substance at a reference temperature, such as water at 15 °C;[5] much in the fashion ofspecific gravity. Specific heat capacity is also related to other intensive measures of heat capacity with other denominators. If the amount of substance is measured as a number ofmoles, one gets themolar heat capacity instead, whose SI unit is joule per kelvin per mole, J⋅mol−1⋅K−1. If the amount is taken to be thevolume of the sample (as is sometimes done in engineering), one gets thevolumetric heat capacity, whose SI unit is joule per kelvin percubic meter, J⋅m−3⋅K−1.

History

[edit]

Discovery of specific heat

[edit]
Joseph Black

One of the first scientists to use the concept wasJoseph Black, an 18th-century medical doctor and professor of medicine atGlasgow University. He measured the specific heat capacities of many substances, using the termcapacity for heat.[6] In 1756 or soon thereafter, Black began an extensive study of heat.[7] In 1760 he realized that when two different substances of equal mass but different temperatures are mixed, the changes in number of degrees in the two substances differ, though the heat gained by the cooler substance and lost by the hotter is the same. Black related an experiment conducted byDaniel Gabriel Fahrenheit on behalf of Dutch physicianHerman Boerhaave. For clarity, he then described a hypothetical, but realistic variant of the experiment: If equal masses of 100 °F water and 150 °F mercury are mixed, the water temperature increases by 20 ° and the mercury temperature decreases by 30 ° (both arriving at 120 °F), even though the heat gained by the water and lost by the mercury is the same. This clarified the distinction between heat and temperature. It also introduced the concept of specific heat capacity, being different for different substances. Black wrote: "Quicksilver [mercury] ... has less capacity for the matter of heat than water."[8][9]

Definition

[edit]

The specific heat capacity of a substance, usually denoted byc{\displaystyle c} ors{\displaystyle s}, is the heat capacityC{\displaystyle C} of a sample of the substance, divided by the massM{\displaystyle M} of the sample:[10]c=CM=1MdQdT,{\displaystyle c={\frac {C}{M}}={\frac {1}{M}}\cdot {\frac {\mathrm {d} Q}{\mathrm {d} T}},}wheredQ{\displaystyle \mathrm {d} Q}represents the amount of heat needed to uniformly raise the temperature of the sample by a small incrementdT{\displaystyle \mathrm {d} T}.

Like the heat capacity of an object, the specific heat capacity of a substance may vary, sometimes substantially, depending on the starting temperatureT{\displaystyle T} of the sample and thepressurep{\displaystyle p} applied to it. Therefore, it should be considered a functionc(p,T){\displaystyle c(p,T)} of those two variables.

These parameters are usually specified when giving the specific heat capacity of a substance. For example, "Water (liquid):cp{\displaystyle c_{p}} = 4187 J⋅kg−1⋅K−1 (15 °C)."[11] When not specified, published values of the specific heat capacityc{\displaystyle c} generally are valid for somestandard conditions for temperature and pressure.

However, the dependency ofc{\displaystyle c} on starting temperature and pressure can often be ignored in practical contexts, e.g. when working in narrow ranges of those variables. In those contexts one usually omits the qualifier(p,T){\displaystyle (p,T)} and approximates the specific heat capacity by a constantc{\displaystyle c} suitable for those ranges.

Specific heat capacity is anintensive property of a substance, an intrinsic characteristic that does not depend on the size or shape of the amount in consideration. (The qualifier "specific" in front of an extensive property often indicates an intensive property derived from it.[12])

Variations

[edit]

The injection of heat energy into a substance, besides raising its temperature, usually causes an increase in its volume and/or its pressure, depending on how the sample is confined. The choice made about the latter affects the measured specific heat capacity, even for the same starting pressurep{\displaystyle p} and starting temperatureT{\displaystyle T}. Two particular choices are widely used:

  • If the pressure is kept constant (for instance, at the ambient atmospheric pressure), and the sample is allowed to expand, the expansion generateswork, as the force from the pressure displaces the enclosure or the surrounding fluid. That work must come from the heat energy provided. The specific heat capacity thus obtained is said to be measuredat constant pressure (orisobaric) and is often denotedcp{\displaystyle c_{p}}.
  • On the other hand, if the expansion is prevented – for example, by a sufficiently rigid enclosure or by increasing the external pressure to counteract the internal one – no work is generated, and the heat energy that would have gone into it must instead contribute to the internal energy of the sample, including raising its temperature by an extra amount. The specific heat capacity obtained this way is said to be measuredat constant volume (orisochoric) and denotedcV{\displaystyle c_{V}}.

The value ofcV{\displaystyle c_{V}} is always less than the value ofcp{\displaystyle c_{p}} for all fluids. This difference is particularly notable in gases where values under constant pressure are typically 30% to 66.7% greater than those at constant volume. Hence theheat capacity ratio of gases is typically between 1.3 and 1.67.[13]

Applicability

[edit]

The specific heat capacity can be defined and measured for gases, liquids, and solids of fairly general composition and molecular structure. These include gas mixtures, solutions and alloys, or heterogenous materials such as milk, sand, granite, and concrete, if considered at a sufficiently large scale.

The specific heat capacity can be defined also for materials that change state or composition as the temperature and pressure change, as long as the changes are reversible and gradual. Thus, for example, the concepts are definable for a gas or liquid that dissociates as the temperature increases, as long as the products of the dissociation promptly and completely recombine when it drops.

The specific heat capacity is not meaningful if the substance undergoes irreversible chemical changes, or if there is aphase change, such as melting or boiling, at a sharp temperature within the range of temperatures spanned by the measurement.

Measurement

[edit]

The specific heat capacity of a substance is typically determined according to the definition; namely, by measuring the heat capacity of a sample of the substance, usually with acalorimeter, and dividing by the sample's mass. Several techniques can be applied for estimating the heat capacity of a substance, such asdifferential scanning calorimetry.[14][15]

Graph of temperature of phases of water heated from−100 °C to200 °C – the dashed line example shows that melting and heating1 kg of ice at−50 °C to water at40 °C needs600 kJ

The specific heat capacities of gases can be measured at constant volume, by enclosing the sample in a rigid container. On the other hand, measuring the specific heat capacity at constant volume can be prohibitively difficult for liquids and solids, since one often would need impractical pressures in order to prevent the expansion that would be caused by even small increases in temperature. Instead, the common practice is to measure the specific heat capacity at constant pressure (allowing the material to expand or contract as it wishes), determine separately thecoefficient of thermal expansion and thecompressibility of the material, and compute the specific heat capacity at constant volume from these data according to the laws of thermodynamics.[citation needed]

Units

[edit]

International system

[edit]

The SI unit for specific heat capacity is joule per kelvin per kilogramJ/kg⋅K, J⋅K−1⋅kg−1. Since an increment of temperature of onedegree Celsius is the same as an increment of one kelvin, that is the same as joule per degree Celsius per kilogram: J/(kg⋅°C). Sometimes thegram is used instead of kilogram for the unit of mass: 1 J⋅g−1⋅K−1 = 1000 J⋅kg−1⋅K−1.

The specific heat capacity of a substance (per unit of mass) hasdimension L2⋅Θ−1⋅T−2, or (L/T)2/Θ. Therefore, the SI unit J⋅kg−1⋅K−1 is equivalent tometre squared persecond squared perkelvin (m2⋅K−1⋅s−2).

Imperial engineering units

[edit]

Professionals inconstruction,civil engineering,chemical engineering, and other technical disciplines, especially in theUnited States, may useEnglish Engineering units including thepound (lb = 0.45359237 kg) as the unit of mass, thedegree Fahrenheit orRankine (°R =5/9 K, about 0.555556 K) as the unit of temperature increment, and theBritish thermal unit (BTU ≈ 1055.056 J),[16][17] as the unit of heat.

In those contexts, the unit of specific heat capacity is BTU/lb⋅°R, or 1BTU/lb⋅°R = 4186.68J/kg⋅K.[18] The BTU was originally defined so that the average specific heat capacity of water would be 1 BTU/lb⋅°F.[19] Note the value's similarity to that of the calorie - 4187 J/kg⋅°C ≈ 4184 J/kg⋅°C (~.07%) - as they are essentially measuring the same energy, using water as a basis reference, scaled to their systems' respective lbs and °F, or kg and °C.

Calories

[edit]

In chemistry, heat amounts were often measured incalories. Confusingly, there are two common units with that name, respectively denotedcal andCal:

  • thesmall calorie (gram-calorie, cal) is 4.184 J exactly. It was originally defined so that the specific heat capacity of liquid water would be 1 cal/(°C⋅g).
  • Thegrand calorie (kilocalorie, kilogram-calorie, food calorie, kcal, Cal) is 1000 small calories, 4184 J exactly. It was defined so that the specific heat capacity of water would be 1 Cal/(°C⋅kg).

While these units are still used in some contexts (such as kilogram calorie innutrition), their use is now deprecated in technical and scientific fields. When heat is measured in these units, the unit of specific heat capacity is usually:

cal/°C⋅g = 1 Cal/°C⋅kg = 1 kcal/°C⋅kg = 4184 J/kg⋅K[20] = 4.184 kJ/kg⋅K.

Note that while cal is11000 of a Cal or kcal, it is also pergram instead ofkilogram: ergo, in either unit, the specific heat capacity of water is approximately 1.

Physical basis

[edit]
Main article:Molar heat capacity § Physical basis

The temperature of a sample of a substance reflects the averagekinetic energy of its constituent particles (atoms or molecules) relative to its center of mass. However, not all energy provided to a sample of a substance will go into raising its temperature, exemplified via theequipartition theorem.

Monatomic gases

[edit]

Statistical mechanics predicts that at room temperature and ordinary pressures, an isolated atom in a gas cannot store any significant amount of energy except in the form of kinetic energy, unless multiple electronic states are accessible at room temperature (such is the case for atomic fluorine).[21] Thus, theheat capacity per mole at room temperature is the same for all of the noble gases as well as for many other atomic vapors. More precisely,cV,m=3R/212.5JK1mol1{\displaystyle c_{V,\mathrm {m} }=3R/2\approx \mathrm {12.5\,J\cdot K^{-1}\cdot mol^{-1}} } andcP,m=5R/221JK1mol1{\displaystyle c_{P,\mathrm {m} }=5R/2\approx \mathrm {21\,J\cdot K^{-1}\cdot mol^{-1}} }, whereR8.31446JK1mol1{\displaystyle R\approx \mathrm {8.31446\,J\cdot K^{-1}\cdot mol^{-1}} } is theideal gas unit (which is the product ofBoltzmann conversion constant fromkelvin microscopic energy unit to the macroscopic energy unitjoule, and theAvogadro number).

Therefore, the specific heat capacity (per gram, not per mole) of a monatomic gas will be inversely proportional to its (adimensional)atomic weightA{\displaystyle A}. That is, approximately,

cV12470JK1kg1/Acp20785JK1kg1/A{\displaystyle c_{V}\approx \mathrm {12470\,J\cdot K^{-1}\cdot kg^{-1}} /A\quad \quad \quad c_{p}\approx \mathrm {20785\,J\cdot K^{-1}\cdot kg^{-1}} /A}

For the noble gases, from helium to xenon, these computed values are

GasHeNeArKrXe
A{\displaystyle A}4.0020.1739.9583.80131.29
cV{\displaystyle c_{V}} (J⋅K−1⋅kg−1)3118618.3312.2148.894.99
cp{\displaystyle c_{p}} (J⋅K−1⋅kg−1)51971031520.3248.0158.3

Polyatomic gases

[edit]

A polyatomic gas molecule can store energy in additional degrees of freedom. Its kinetic energy contributes to the heat capacity in the same way as monatomic gases, but there are also contributions from therotations of the molecule and vibration of the atoms relative to each other (including internalpotential energy).

The heat capacity may also have contribution fromexcited electronic states for molecules with a sufficiently small energy gap between the ground state and the excited state, such as inNO.[22] For a few systems, quantum spin statistics can also be important contributions to the heat capacity, even at room temperature. The analysis of the heat capacity ofH
2
due to ortho/para separation,[23] which arises fromnuclear spin statistics, has been referred to as "one of the great triumphs of post-quantum mechanical statistical mechanics."[24]

These extradegrees of freedom or "modes" contribute to the specific heat capacity of the substance. Namely, when energy is introduced into a gas with polyatomic molecules, only part of it will increase their kinetic energy, and hence the temperature; the rest will go to into the other degrees of freedom. To achieve the same increase in temperature, more heat is needed for a gram of that substance than for a gram of a monatomic gas. Thus, the specific heat capacity per mole of a polyatomic gas depends both on the molecular mass and the number of degrees of freedom of the molecules.[25][26][27]

Quantum statistical mechanics predicts that each rotational or vibrational mode can only take or lose energy in certain discrete amounts (quanta), and that this affects the system's thermodynamic properties. Depending on the temperature, the average energy per molecule may be too small compared to the quanta needed to activate some of those degrees of freedom. Those modes are said to be "frozen out". In that case, the specific heat capacity of the substance increases with temperature, sometimes in a step-like fashion as mode becomes unfrozen and starts absorbing part of the input heat.

For example, the molar heat capacity ofnitrogenN
2
at constant volume iscV,m=20.6JK1mol1{\displaystyle c_{V,\mathrm {m} }=\mathrm {20.6\,J\cdot K^{-1}\cdot mol^{-1}} } (at 15 °C, 1 atm), which is2.49R{\displaystyle 2.49R}.[28] That is the value expected from theEquipartition Theorem if each molecule had 5 kinetic degrees of freedom. These turn out to be three degrees of the molecule's velocity vector, plus two degrees from its rotation about an axis through the center of mass and perpendicular to the line of the two atoms. Because of those two extra degrees of freedom, the specific heat capacitycV{\displaystyle c_{V}} ofN
2
(736 J⋅K−1⋅kg−1) is greater than that of an hypothetical monatomic gas with the same molecular mass 28 (445 J⋅K−1⋅kg−1), by a factor of5/3. The vibrational and electronic degrees of freedom do not contribute significantly to the heat capacity in this case, due to the relatively large energy level gaps for both vibrational and electronic excitation in this molecule.

This value for the specific heat capacity of nitrogen is practically constant from below −150 °C to about 300 °C. In that temperature range, the two additional degrees of freedom that correspond to vibrations of the atoms, stretching and compressing the bond, are still "frozen out". At about that temperature, those modes begin to "un-freeze" as vibrationally excited states become accessible. As a resultcV{\displaystyle c_{V}} starts to increase rapidly at first, then slower as it tends to another constant value. It is 35.5 J⋅K−1⋅mol−1 at 1500 °C, 36.9 at 2500 °C, and 37.5 at 3500 °C.[29] The last value corresponds almost exactly to the value predicted by the Equipartition Theorem, since in the high-temperature limit the theorem predicts that the vibrational degree of freedom contributes twice as much to the heat capacity as any one of the translational or rotational degrees of freedom.

Derivations of heat capacity

[edit]

Relation between specific heat capacities

[edit]

Starting from thefundamental thermodynamic relation one can show,

cpcv=α2TρβT{\displaystyle c_{p}-c_{v}={\frac {\alpha ^{2}T}{\rho \beta _{T}}}}

where

A derivation is discussed in the articleRelations between specific heats.

For anideal gas, ifρ{\displaystyle \rho } is expressed asmolar density in the above equation, this equation reduces simply toMayer's relation,

Cp,mCv,m=R{\displaystyle C_{p,m}-C_{v,m}=R\!}

whereCp,m{\displaystyle C_{p,m}} andCv,m{\displaystyle C_{v,m}} areintensive property heat capacities expressed on a per mole basis at constant pressure and constant volume, respectively.

Specific heat capacity

[edit]

The specific heat capacity of a material on a per mass basis is

c=Cm,{\displaystyle c={\partial C \over \partial m},}

which in the absence of phase transitions is equivalent to

c=Em=Cm=CρV,{\displaystyle c=E_{m}={C \over m}={C \over {\rho V}},}

where

For gases, and also for other materials under high pressures, there is need to distinguish between different boundary conditions for the processes under consideration (since values differ significantly between different conditions). Typical processes for which a heat capacity may be defined includeisobaric (constant pressure,dp=0{\displaystyle dp=0}) orisochoric (constant volume,dV=0{\displaystyle dV=0}) processes. The corresponding specific heat capacities are expressed as

cp=(Cm)p,cV=(Cm)V.{\displaystyle {\begin{aligned}c_{p}&=\left({\frac {\partial C}{\partial m}}\right)_{p},\\c_{V}&=\left({\frac {\partial C}{\partial m}}\right)_{V}.\end{aligned}}}

A related parameter toc{\displaystyle c} isCV1{\displaystyle CV^{-1}}, thevolumetric heat capacity. In engineering practice,cV{\displaystyle c_{V}} for solids or liquids often signifies a volumetric heat capacity, rather than a constant-volume one. In such cases, the mass-specific heat capacity is often explicitly written with the subscriptm{\displaystyle m}, ascm{\displaystyle c_{m}}. Of course, from the above relationships, for solids one writes

cm=Cm=cVρ.{\displaystyle c_{m}={\frac {C}{m}}={\frac {c_{V}}{\rho }}.}

For pure homogeneouschemical compounds with establishedmolecular or molar mass or amolar quantity is established, heat capacity as anintensive property can be expressed on a permole basis instead of a per mass basis by the following equations analogous to the per mass equations:

Cp,m=(Cn)p=molar heat capacity at constant pressureCV,m=(Cn)V=molar heat capacity at constant volume{\displaystyle {\begin{alignedat}{3}C_{p,m}=\left({\frac {\partial C}{\partial n}}\right)_{p}&={\text{molar heat capacity at constant pressure}}\\C_{V,m}=\left({\frac {\partial C}{\partial n}}\right)_{V}&={\text{molar heat capacity at constant volume}}\end{alignedat}}}

wheren = number of moles in the body orthermodynamic system. One may refer to such aper mole quantity as molar heat capacity to distinguish it from specific heat capacity on a per-mass basis.

Polytropic heat capacity

[edit]

Thepolytropic heat capacity is calculated at processes if all the thermodynamic properties (pressure, volume, temperature) change

Ci,m=(Cn)=molar heat capacity at polytropic process{\displaystyle C_{i,m}=\left({\frac {\partial C}{\partial n}}\right)={\text{molar heat capacity at polytropic process}}}

The most important polytropic processes run between the adiabatic and the isotherm functions, the polytropic index is between1 and the adiabatic exponent (γ orκ)

Dimensionless heat capacity

[edit]

Thedimensionless heat capacity of a material is

C=CnR=CNkB{\displaystyle C^{*}={\frac {C}{nR}}={\frac {C}{Nk_{\text{B}}}}}

where

Again,SI units shown for example.

In theIdeal gas article, dimensionless heat capacityC{\displaystyle C^{*}} is expressed asc^{\displaystyle {\hat {c}}}.

Heat capacity at absolute zero

[edit]

From the definition ofentropy

TdS=δQ{\displaystyle TdS=\delta Q}

the absolute entropy can be calculated by integrating from zero kelvins temperature to the final temperatureTf

S(Tf)=T=0TfδQT=0TfδQdTdTT=0TfC(T)dTT.{\displaystyle S(T_{f})=\int _{T=0}^{T_{f}}{\frac {\delta Q}{T}}=\int _{0}^{T_{f}}{\frac {\delta Q}{dT}}{\frac {dT}{T}}=\int _{0}^{T_{f}}C(T)\,{\frac {dT}{T}}.}

The heat capacity must be zero at zero temperature in order for the above integral not to yield an infinite absolute entropy, thus violating thethird law of thermodynamics. One of the strengths of theDebye model is that (unlike the preceding Einstein model) it predicts the proper mathematical form of the approach of heat capacity toward zero, as absolute zero temperature is approached.

Solid phase

[edit]

The theoretical maximum heat capacity for larger and larger multi-atomic gases at higher temperatures, also approaches the Dulong–Petit limit of 3R, so long as this is calculated per mole of atoms, not molecules. The reason is that gases with very large molecules, in theory have almost the same high-temperature heat capacity as solids, lacking only the (small) heat capacity contribution that comes from potential energy that cannot be stored between separate molecules in a gas.

The Dulong–Petit limit results from theequipartition theorem, and as such is only valid in the classical limit of amicrostate continuum, which is a high temperature limit. For light and non-metallic elements, as well as most of the common molecular solids based on carbon compounds atstandard ambient temperature, quantum effects may also play an important role, as they do in multi-atomic gases. These effects usually combine to give heat capacities lower than 3R per mole ofatoms in the solid, although in molecular solids, heat capacities calculatedper mole of molecules in molecular solids may be more than 3R. For example, the heat capacity of water ice at the melting point is about 4.6R per mole of molecules, but only 1.5R per mole of atoms. The lower than 3R number "per atom" (as is the case with diamond and beryllium) results from the "freezing out" of possible vibration modes for light atoms at suitably low temperatures, just as in many low-mass-atom gases at room temperatures. Because of high crystal binding energies, these effects are seen in solids more often than liquids: for example the heat capacity of liquid water is twice that of ice at near the same temperature, and is again close to the 3R per mole of atoms of the Dulong–Petit theoretical maximum.

For a more modern and precise analysis of the heat capacities of solids, especially at low temperatures, it is useful to use the idea ofphonons. SeeDebye model.

Theoretical estimation

[edit]

The path integral Monte Carlo method is a numerical approach for determining the values of heat capacity, based on quantum dynamical principles. However, good approximations can be made for gases in many states using simpler methods outlined below. For many solids composed of relatively heavy atoms (atomic number > iron), at non-cryogenic temperatures, the heat capacity at room temperature approaches 3R = 24.94 joules per kelvin per mole of atoms (Dulong–Petit law, R is the gas constant). Low temperature approximations for both gases and solids at temperatures less than their characteristic Einstein temperatures or Debye temperatures can be made by the methods of Einstein and Debye discussed below.

  • Water (liquid): CP = 4185.5 J⋅K−1⋅kg−1 (15 °C, 101.325 kPa)
  • Water (liquid): CVH = 74.539 J⋅K−1⋅mol−1 (25 °C)

For liquids and gases, it is important to know the pressure to which given heat capacity data refer. Most published data are given for standard pressure. However, different standard conditions for temperature and pressure have been defined by different organizations. The International Union of Pure and Applied Chemistry (IUPAC) changed its recommendation from one atmosphere to the round value 100 kPa (≈750.062 Torr).[notes 1]

Relation between heat capacities

[edit]
Main article:Relations between heat capacities

Measuring the specific heat capacity at constant volume can be prohibitively difficult for liquids and solids. That is, small temperature changes typically require large pressures to maintain a liquid or solid at constant volume, implying that the containing vessel must be nearly rigid or at least very strong (seecoefficient of thermal expansion andcompressibility). Instead, it is easier to measure the heat capacity at constant pressure (allowing the material to expand or contract freely) and solve for the heat capacity at constant volume using mathematical relationships derived from the basic thermodynamic laws.

Theheat capacity ratio, or adiabatic index, is the ratio of the heat capacity at constant pressure to heat capacity at constant volume. It is sometimes also known as the isentropic expansion factor.

Ideal gas

[edit]

For anideal gas, evaluating the partial derivatives above according to theequation of state, whereR is thegas constant, for an ideal gas[30]

PV=nRT,CPCV=T(PT)V,n(VT)P,n,P=nRTV(PT)V,n=nRV,V=nRTP(VT)P,n=nRP.{\displaystyle {\begin{alignedat}{3}PV&=nRT,&\\C_{P}-C_{V}&=T\left({\frac {\partial P}{\partial T}}\right)_{V,n}\left({\frac {\partial V}{\partial T}}\right)_{P,n},&\\P&={\frac {nRT}{V}}\Rightarrow \left({\frac {\partial P}{\partial T}}\right)_{V,n}&={\frac {nR}{V}},\\V&={\frac {nRT}{P}}\Rightarrow \left({\frac {\partial V}{\partial T}}\right)_{P,n}&={\frac {nR}{P}}.\end{alignedat}}}

Substituting

T(PT)V,n(VT)P,n=TnRVnRP=nRTVnRP=PnRP=nR,{\displaystyle T\left({\frac {\partial P}{\partial T}}\right)_{V,n}\left({\frac {\partial V}{\partial T}}\right)_{P,n}=T{\frac {nR}{V}}{\frac {nR}{P}}={\frac {nRT}{V}}{\frac {nR}{P}}=P{\frac {nR}{P}}=nR,}

this equation reduces simply toMayer's relation:

CP,mCV,m=R.{\displaystyle C_{P,m}-C_{V,m}=R.}

The differences in heat capacities as defined by the above Mayer relation is only exact for an ideal gas and would be different for any real gas.

Specific heat capacity

[edit]

The specific heat capacity of a material on a per mass basis is

c=Cm,{\displaystyle c={\frac {\partial C}{\partial m}},}

which in the absence of phase transitions is equivalent to

c=Em=Cm=CρV,{\displaystyle c=E_{m}={\frac {C}{m}}={\frac {C}{\rho V}},}

where

For gases, and also for other materials under high pressures, there is need to distinguish between different boundary conditions for the processes under consideration (since values differ significantly between different conditions). Typical processes for which a heat capacity may be defined includeisobaric (constant pressure,dP=0{\displaystyle {\text{d}}P=0}) orisochoric (constant volume,dV=0{\displaystyle {\text{d}}V=0}) processes. The corresponding specific heat capacities are expressed as

cP=(Cm)P,cV=(Cm)V.{\displaystyle {\begin{aligned}c_{P}&=\left({\frac {\partial C}{\partial m}}\right)_{P},\\c_{V}&=\left({\frac {\partial C}{\partial m}}\right)_{V}.\end{aligned}}}

From the results of the previous section, dividing through by the mass gives the relation

cPcV=α2TρβT.{\displaystyle c_{P}-c_{V}={\frac {\alpha ^{2}T}{\rho \beta _{T}}}.}

A related parameter toc{\displaystyle c} isC/V{\displaystyle C/V}, thevolumetric heat capacity. In engineering practice,cV{\displaystyle c_{V}} for solids or liquids often signifies a volumetric heat capacity, rather than a constant-volume one. In such cases, the specific heat capacity is often explicitly written with the subscriptm{\displaystyle m}, ascm{\displaystyle c_{m}}. Of course, from the above relationships, for solids one writes

cm=Cm=cvolumetricρ.{\displaystyle c_{m}={\frac {C}{m}}={\frac {c_{\text{volumetric}}}{\rho }}.}

For purehomogeneouschemical compounds with establishedmolecular or molar mass, or amolar quantity, heat capacity as anintensive property can be expressed on a per-mole basis instead of a per-mass basis by the following equations analogous to the per mass equations:

CP,m=(Cn)P=molar heat capacity at constant pressure,CV,m=(Cn)V=molar heat capacity at constant volume,{\displaystyle {\begin{alignedat}{3}C_{P,m}&=\left({\frac {\partial C}{\partial n}}\right)_{P}&={\text{molar heat capacity at constant pressure,}}\\C_{V,m}&=\left({\frac {\partial C}{\partial n}}\right)_{V}&={\text{molar heat capacity at constant volume,}}\end{alignedat}}}

wheren is the number of moles in the body orthermodynamic system. One may refer to such a per-mole quantity asmolar heat capacity to distinguish it from specific heat capacity on a per-mass basis.

Polytropic heat capacity

[edit]

Thepolytropic heat capacity is calculated at processes if all the thermodynamic properties (pressure, volume, temperature) change:

Ci,m=(Cn)=molar heat capacity at polytropic process.{\displaystyle C_{i,m}=\left({\frac {\partial C}{\partial n}}\right)={\text{molar heat capacity at polytropic process.}}}

The most important polytropic processes run between the adiabatic and the isotherm functions, the polytropic index is between 1 and the adiabatic exponent (γ orκ).

Dimensionless heat capacity

[edit]

Thedimensionless heat capacity of a material is

C=CnR=CNkB,{\displaystyle C^{*}={\frac {C}{nR}}={\frac {C}{Nk_{\text{B}}}},}

where

In theideal gas article, dimensionless heat capacityC{\displaystyle C^{*}} is expressed asc^{\displaystyle {\hat {c}}} and is related there directly to half the number of degrees of freedom per particle. This holds true for quadratic degrees of freedom, a consequence of theequipartition theorem.

More generally, the dimensionless heat capacity relates the logarithmic increase in temperature to the increase in thedimensionless entropy per particleS=S/NkB{\displaystyle S^{*}=S/Nk_{\text{B}}}, measured innats.

C=dSd(lnT).{\displaystyle C^{*}={\frac {{\text{d}}S^{*}}{{\text{d}}(\ln T)}}.}

Alternatively, using base-2 logarithms,C{\displaystyle C^{*}} relates the base-2 logarithmic increase in temperature to the increase in the dimensionless entropy measured inbits.[31]

Heat capacity at absolute zero

[edit]

From the definition ofentropy

TdS=δQ,{\displaystyle T\,{\text{d}}S=\delta Q,}

the absolute entropy can be calculated by integrating from zero to the final temperatureTf:

S(Tf)=T=0TfδQT=0TfδQdTdTT=0TfC(T)dTT.{\displaystyle S(T_{\text{f}})=\int _{T=0}^{T_{\text{f}}}{\frac {\delta Q}{T}}=\int _{0}^{T_{\text{f}}}{\frac {\delta Q}{{\text{d}}T}}{\frac {{\text{d}}T}{T}}=\int _{0}^{T_{\text{f}}}C(T)\,{\frac {{\text{d}}T}{T}}.}

Thermodynamic derivation

[edit]

In theory, the specific heat capacity of a substance can also be derived from its abstract thermodynamic modeling by anequation of state and aninternal energy function.

State of matter in a homogeneous sample

[edit]

To apply the theory, one considers the sample of the substance (solid, liquid, or gas) for which the specific heat capacity can be defined; in particular, that it has homogeneous composition and fixed massM{\displaystyle M}. Assume that the evolution of the system is always slow enough for the internal pressureP{\displaystyle P} and temperatureT{\displaystyle T} be considered uniform throughout. The pressureP{\displaystyle P} would be equal to the pressure applied to it by the enclosure or some surrounding fluid, such as air.

The state of the material can then be specified by three parameters: its temperatureT{\displaystyle T}, the pressureP{\displaystyle P}, and itsspecific volumeν=V/M{\displaystyle \nu =V/M}, whereV{\displaystyle V} is the volume of the sample. (This quantity is the reciprocal1/ρ{\displaystyle 1/\rho } of the material'sdensityρ=M/V{\displaystyle \rho =M/V}.) LikeT{\displaystyle T} andP{\displaystyle P}, the specific volumeν{\displaystyle \nu } is an intensive property of the material and its state, that does not depend on the amount of substance in the sample.

Those variables are not independent. The allowed states are defined by anequation of state relating those three variables:F(T,P,ν)=0.{\displaystyle F(T,P,\nu )=0.} The functionF{\displaystyle F} depends on the material under consideration. Thespecific internal energy stored internally in the sample, per unit of mass, will then be another functionU(T,P,ν){\displaystyle U(T,P,\nu )} of these state variables, that is also specific of the material. The total internal energy in the sample then will beMU(T,P,ν){\displaystyle M\,U(T,P,\nu )}.

For some simple materials, like anideal gas, one can derive from basic theory the equation of stateF=0{\displaystyle F=0} and even the specific internal energyU{\displaystyle U} In general, these functions must be determined experimentally for each substance.

Conservation of energy

[edit]

The absolute value of this quantityU{\displaystyle U} is undefined, and (for the purposes of thermodynamics) the state of "zero internal energy" can be chosen arbitrarily. However, by thelaw of conservation of energy, any infinitesimal increaseMdU{\displaystyle M\,\mathrm {d} U} in the total internal energyMU{\displaystyle MU} must be matched by the net flow of heat energydQ{\displaystyle \mathrm {d} Q} into the sample, plus any net mechanical energy provided to it by enclosure or surrounding medium on it. The latter isPdV{\displaystyle -P\,\mathrm {d} V}, wheredV{\displaystyle \mathrm {d} V} is the change in the sample's volume in that infinitesimal step.[32] Therefore

dQPdV=MdU{\displaystyle \mathrm {d} Q-P\,\mathrm {d} V=M\,\mathrm {d} U}

hence

dQMPdν=dU{\displaystyle {\frac {\mathrm {d} Q}{M}}-P\,\mathrm {d} \nu =\mathrm {d} U}

If the volume of the sample (hence the specific volume of the material) is kept constant during the injection of the heat amountdQ{\displaystyle \mathrm {d} Q}, then the termPdν{\displaystyle P\,\mathrm {d} \nu } is zero (no mechanical work is done). Then, dividing bydT{\displaystyle \mathrm {d} T},

dQMdT=dUdT{\displaystyle {\frac {\mathrm {d} Q}{M\,\mathrm {d} T}}={\frac {\mathrm {d} U}{\mathrm {d} T}}}

wheredT{\displaystyle \mathrm {d} T} is the change in temperature that resulted from the heat input. The left-hand side is the specific heat capacity at constant volumecV{\displaystyle c_{V}} of the material.

For the heat capacity at constant pressure, it is useful to define thespecific enthalpy of the system as the sumh(T,P,ν)=U(T,P,ν)+Pν{\displaystyle h(T,P,\nu )=U(T,P,\nu )+P\nu }. An infinitesimal change in the specific enthalpy will then be

dh=dU+VdP+PdV{\displaystyle \mathrm {d} h=\mathrm {d} U+V\,\mathrm {d} P+P\,\mathrm {d} V}

therefore

dQM+VdP=dh{\displaystyle {\frac {\mathrm {d} Q}{M}}+V\,\mathrm {d} P=\mathrm {d} h}

If the pressure is kept constant, the second term on the left-hand side is zero, and

dQMdT=dhdT{\displaystyle {\frac {\mathrm {d} Q}{M\,\mathrm {d} T}}={\frac {\mathrm {d} h}{\mathrm {d} T}}}

The left-hand side is the specific heat capacity at constant pressurecP{\displaystyle c_{P}} of the material.

Connection to equation of state

[edit]

In general, the infinitesimal quantitiesdT,dP,dV,dU{\displaystyle \mathrm {d} T,\mathrm {d} P,\mathrm {d} V,\mathrm {d} U} are constrained by the equation of state and the specific internal energy function. Namely,

{dTFT(T,P,V)+dPFP(T,P,V)+dVFV(T,P,V)=0dTUT(T,P,V)+dPUP(T,P,V)+dVUV(T,P,V)=dU{\displaystyle {\begin{cases}\displaystyle \mathrm {d} T{\frac {\partial F}{\partial T}}(T,P,V)+\mathrm {d} P{\frac {\partial F}{\partial P}}(T,P,V)+\mathrm {d} V{\frac {\partial F}{\partial V}}(T,P,V)&=&0\\[2ex]\displaystyle \mathrm {d} T{\frac {\partial U}{\partial T}}(T,P,V)+\mathrm {d} P{\frac {\partial U}{\partial P}}(T,P,V)+\mathrm {d} V{\frac {\partial U}{\partial V}}(T,P,V)&=&\mathrm {d} U\end{cases}}}

Here(F/T)(T,P,V){\displaystyle (\partial F/\partial T)(T,P,V)} denotes the (partial) derivative of the state equationF{\displaystyle F} with respect to itsT{\displaystyle T} argument, keeping the other two arguments fixed, evaluated at the state(T,P,V){\displaystyle (T,P,V)} in question. The other partial derivatives are defined in the same way. These two equations on the four infinitesimal increments normally constrain them to a two-dimensional linear subspace space of possible infinitesimal state changes, that depends on the material and on the state. The constant-volume and constant-pressure changes are only two particular directions in this space.

This analysis also holds no matter how the energy incrementdQ{\displaystyle \mathrm {d} Q} is injected into the sample, namely byheat conduction, irradiation,electromagnetic induction,radioactive decay, etc.

Relation between heat capacities

[edit]

For any specific volumeν{\displaystyle \nu }, denotepν(T){\displaystyle p_{\nu }(T)} the function that describes how the pressure varies with the temperatureT{\displaystyle T}, as allowed by the equation of state, when the specific volume of the material is forcefully kept constant atν{\displaystyle \nu }. Analogously, for any pressureP{\displaystyle P}, letνP(T){\displaystyle \nu _{P}(T)} be the function that describes how the specific volume varies with the temperature, when the pressure is kept constant atP{\displaystyle P}. Namely, those functions are such that

F(T,pν(T),ν)=0{\displaystyle F(T,p_{\nu }(T),\nu )=0}andF(T,P,νP(T))=0{\displaystyle F(T,P,\nu _{P}(T))=0}

for any values ofT,P,ν{\displaystyle T,P,\nu }. In other words, the graphs ofpν(T){\displaystyle p_{\nu }(T)} andνP(T){\displaystyle \nu _{P}(T)} are slices of the surface defined by the state equation, cut by planes of constantν{\displaystyle \nu } and constantP{\displaystyle P}, respectively.

Then, from thefundamental thermodynamic relation it follows that

cP(T,P,ν)cV(T,P,ν)=T[dpνdT(T)][dνPdT(T)]{\displaystyle c_{P}(T,P,\nu )-c_{V}(T,P,\nu )=T\left[{\frac {\mathrm {d} p_{\nu }}{\mathrm {d} T}}(T)\right]\left[{\frac {\mathrm {d} \nu _{P}}{\mathrm {d} T}}(T)\right]}

This equation can be rewritten as

cP(T,P,ν)cV(T,P,ν)=νTα2βT,{\displaystyle c_{P}(T,P,\nu )-c_{V}(T,P,\nu )=\nu T{\frac {\alpha ^{2}}{\beta _{T}}},}

where

both depending on the state(T,P,ν){\displaystyle (T,P,\nu )}.

Theheat capacity ratio, or adiabatic index, is the ratiocP/cV{\displaystyle c_{P}/c_{V}} of the heat capacity at constant pressure to heat capacity at constant volume. It is sometimes also known as the isentropic expansion factor.

Calculation from first principles

[edit]

Thepath integral Monte Carlo method is a numerical approach for determining the values of heat capacity, based on quantum dynamical principles. However, good approximations can be made for gases in many states using simpler methods outlined below. For many solids composed of relatively heavy atoms (atomic number > iron), at non-cryogenic temperatures, the heat capacity at room temperature approaches 3R = 24.94 joules per kelvin per mole of atoms (Dulong–Petit law,R is thegas constant). Low temperature approximations for both gases and solids at temperatures less than their characteristicEinstein temperatures orDebye temperatures can be made by the methods of Einstein and Debye discussed below. However, attention should be made for the consistency of such ab-initio considerations when used along with an equation of state for the considered material.[33]

Ideal gas

[edit]

For anideal gas, evaluating the partial derivatives above according to theequation of state, whereR is thegas constant, for an ideal gas[34]

PV=nRT,CPCV=T(PT)V,n(VT)P,n,P=nRTV(PT)V,n=nRV,V=nRTP(VT)P,n=nRP.{\displaystyle {\begin{alignedat}{3}PV&=nRT,\\C_{P}-C_{V}&=T\left({\frac {\partial P}{\partial T}}\right)_{V,n}\left({\frac {\partial V}{\partial T}}\right)_{P,n},\\P&={\frac {nRT}{V}}\Rightarrow \left({\frac {\partial P}{\partial T}}\right)_{V,n}&={\frac {nR}{V}},\\V&={\frac {nRT}{P}}\Rightarrow \left({\frac {\partial V}{\partial T}}\right)_{P,n}&={\frac {nR}{P}}.\end{alignedat}}}

Substituting

T(PT)V,n(VT)P,n=TnRVnRP=nRTVnRP=PnRP=nR,{\displaystyle T\left({\frac {\partial P}{\partial T}}\right)_{V,n}\left({\frac {\partial V}{\partial T}}\right)_{P,n}=T{\frac {nR}{V}}{\frac {nR}{P}}={\frac {nRT}{V}}{\frac {nR}{P}}=P{\frac {nR}{P}}=nR,}

this equation reduces simply toMayer's relation:

CP,mCV,m=R.{\displaystyle C_{P,m}-C_{V,m}=R.}

The differences in heat capacities as defined by the above Mayer relation is only exact for an ideal gas and would be different for any real gas.

See also

[edit]

iconPhysics portal

Notes

[edit]
  1. ^IUPAC,Compendium of Chemical Terminology, 5th ed. (the "Gold Book") (2025). Online version: (2006–) "Standard Pressure".doi:10.1351/goldbook.S05921.

References

[edit]
  1. ^Halliday, David; Resnick, Robert; Walker, Jearl (2001).Fundamentals of Physics (6th ed.). New York, NY US:John Wiley & Sons.
  2. ^Open University (2008).S104 Book 3 Energy and Light, p. 59.The Open University.ISBN 9781848731646.
  3. ^Open University (2008).S104 Book 3 Energy and Light, p. 179.The Open University.ISBN 9781848731646.
  4. ^Engineering ToolBox (2003)."Specific Heat of some common Substances".
  5. ^(2001):Columbia Encyclopedia, 6th ed.; as quoted byEncyclopedia.com. Columbia University Press. Accessed on 2019-04-11.
  6. ^Laidler, Keith J. (1993).The World of Physical Chemistry. Oxford University Press.ISBN 0-19-855919-4.
  7. ^Ramsay, William (1918).The life and letters of Joseph Black, M.D. Constable. pp. 38–39.
  8. ^Black, Joseph (1807). Robison, John (ed.).Lectures on the Elements of Chemistry: Delivered in the University of Edinburgh. Vol. 1. Mathew Carey. pp. 76–77.
  9. ^West, John B. (2014-06-15)."Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases".American Journal of Physiology. Lung Cellular and Molecular Physiology.306 (12):L1057–L1063.doi:10.1152/ajplung.00020.2014.ISSN 1040-0605.PMID 24682452.
  10. ^International Bureau of Weights and Measures (2006),The International System of Units (SI)(PDF) (8th ed.),ISBN 92-822-2213-6,archived(PDF) from the original on 2021-06-04, retrieved2021-12-16
  11. ^"Water – Thermal Properties". Engineeringtoolbox.com. Retrieved2021-03-29.
  12. ^International Union of Pure and Applied Chemistry, Physical Chemistry Division."Quantities, Units and Symbols in Physical Chemistry"(PDF). Blackwell Sciences. p. 7.The adjective specific before the name of an extensive quantity is often used to mean divided by mass.
  13. ^Lange's Handbook of Chemistry, 10th ed., page 1524.
  14. ^Quick, C. R.; Schawe, J. E. K.; Uggowitzer, P. J.; Pogatscher, S. (2019-07-01)."Measurement of specific heat capacity via fast scanning calorimetry—Accuracy and loss corrections".Thermochimica Acta. Special Issue on occasion of the 65th birthday of Christoph Schick.677:12–20.Bibcode:2019TcAc..677...12Q.doi:10.1016/j.tca.2019.03.021.ISSN 0040-6031.
  15. ^Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F. (September 2016)."Solid–solid phase transitions via melting in metals".Nature Communications.7 (1) 11113.Bibcode:2016NatCo...711113P.doi:10.1038/ncomms11113.ISSN 2041-1723.PMC 4844691.PMID 27103085.
  16. ^Koch, Werner (2013).VDI Steam Tables (4 ed.). Springer. p. 8.ISBN 978-3-642-52941-2. Published under the auspices of theVerein Deutscher Ingenieure (VDI).
  17. ^Cardarelli, Francois (2012).Scientific Unit Conversion: A Practical Guide to Metrication. M.J. Shields (translation) (2 ed.). Springer. p. 19.ISBN 978-1-4471-0805-4.
  18. ^From direct values: 1BTU/lb⋅°R × 1055.06J/BTU × (1/0.45359237)lb/kg x9/5°R/K = 4186.82J/kg⋅K
  19. ^°F=°R
  20. ^°C=K
  21. ^McQuarrie, Donald A. (1973).Statistical Thermodynamics. New York, NY:University Science Books. pp. 83–85.
  22. ^"6.6: Electronic Partition Function".Chemistry LibreTexts. 2020-11-26. Retrieved2024-12-16.
  23. ^Bonhoeffer, K.F.; Harteck, P. (1926)."Über Para- und Orthowasserstoff".Z. Phys. Chem.4B:113–141.doi:10.1515/zpch-1929-0408.
  24. ^McQuarrie, Donald A. (1973).Statistical Thermodynamics. New York, NY: University Science Books. p. 107.
  25. ^Feynman, R.,The Feynman Lectures on Physics, Vol. 1, ch. 40, pp. 7–8
  26. ^Reif, F. (1965).Fundamentals of statistical and thermal physics. McGraw-Hill. pp. 253–254.
  27. ^Kittel, Charles; Kroemer, Herbert (2000).Thermal physics. W. H. Freeman. p. 78.ISBN 978-0-7167-1088-2.
  28. ^Thornton, Steven T. and Rex, Andrew (1993)Modern Physics for Scientists and Engineers, Saunders College Publishing
  29. ^Chase, M.W. Jr. (1998)NIST-JANAF Themochemical Tables, Fourth Edition, InJournal of Physical and Chemical Reference Data, Monograph 9, pages 1–1951.
  30. ^Yunus A. Cengel and Michael A. Boles,Thermodynamics: An Engineering Approach, 7th Edition, McGraw-Hill, 2010,ISBN 007-352932-X.
  31. ^Fraundorf, P. (2003). "Heat capacity in bits".American Journal of Physics.71 (11): 1142.arXiv:cond-mat/9711074.Bibcode:2003AmJPh..71.1142F.doi:10.1119/1.1593658.S2CID 18742525.
  32. ^Feynman, Richard,The Feynman Lectures on Physics, Vol. 1, Ch. 45
  33. ^S. Benjelloun, "Thermodynamic identities and thermodynamic consistency of Equation of States",Link to Archiv e-printLink to Hal e-print
  34. ^Cengel, Yunus A. and Boles, Michael A. (2010)Thermodynamics: An Engineering Approach, 7th Edition, McGraw-HillISBN 007-352932-X.

Further reading

[edit]
  • Emmerich Wilhelm & Trevor M. Letcher, Eds., 2010,Heat Capacities: Liquids, Solutions and Vapours, Cambridge, U.K.:Royal Society of Chemistry,ISBN 0-85404-176-1. A very recent outline of selected traditional aspects of the title subject, including a recent specialist introduction to its theory, Emmerich Wilhelm, "Heat Capacities: Introduction, Concepts, and Selected Applications" (Chapter 1, pp. 1–27), chapters on traditional and more contemporary experimental methods such asphotoacoustic methods, e.g., Jan Thoen & Christ Glorieux, "Photothermal Techniques for Heat Capacities," and chapters on newer research interests, including on the heat capacities of proteins and other polymeric systems (Chs. 16, 15), of liquid crystals (Ch. 17), etc.

External links

[edit]
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Specific_heat_capacity&oldid=1331748766"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp