Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Space group

From Wikipedia, the free encyclopedia
Symmetry group of a configuration in space
The space group ofhexagonal H2O ice is P63/mmc. The firstm indicates the mirror plane perpendicular to the c-axis (a), the secondm indicates the mirror planes parallel to the c-axis (b), and thec indicates the glide planes (b) and (c). The black boxes outline the unit cell.

Inmathematics,physics andchemistry, aspace group is thesymmetry group of a repeating pattern in space, usually inthree dimensions.[1] The elements of a space group (itssymmetry operations) are therigid transformations of the pattern that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types ifchiral copies are considered distinct. Space groups are discretecocompactgroups ofisometries of an orientedEuclidean space in any number of dimensions. In dimensions other than 3, they are sometimes calledBieberbach groups.

Incrystallography, space groups are also called thecrystallographic orFedorov groups, and represent a description of thesymmetry of the crystal. A definitive source regarding 3-dimensional space groups is theInternational Tables for CrystallographyHahn (2002).

History

[edit]
See also:Geometrical crystallography before X-rays § Space groups

Space groups in 2 dimensions are the 17wallpaper groups which have been known for several centuries, though the proof that the list was complete was only given in 1891, after the much more difficult classification of space groups had largely been completed.[2]

In 1879 the German mathematicianLeonhard Sohncke listed the 65 space groups (called Sohncke groups) whose elements preserve thechirality.[3] More accurately, he listed 66 groups, but both the Russian mathematician and crystallographerEvgraf Fedorov and the German mathematicianArthur Moritz Schoenflies noticed that two of them were really the same. The space groups in three dimensions were first enumerated in 1891 by Fedorov[4] (whose list had two omissions (I43d and Fdd2) and one duplication (Fmm2)), and shortly afterwards in 1891 were independently enumerated by Schönflies[5] (whose list had four omissions (I43d, Pc, Cc, ?) and one duplication (P421m)). The correct list of 230 space groups was found by 1892 during correspondence between Fedorov and Schönflies.[6]William Barlow (1894) later enumerated the groups with a different method, but omitted four groups (Fdd2, I42d, P421d, and P421c) even though he already had the correct list of 230 groups from Fedorov and Schönflies; the common claim that Barlow was unaware of their work is incorrect.[citation needed]Burckhardt (1967) describes the history of the discovery of the space groups in detail.

Elements

[edit]

The space groups in three dimensions are made from combinations of the 32crystallographic point groups with the 14Bravais lattices, each of the latter belonging to one of 7lattice systems. What this means is that the action of any element of a given space group can be expressed as the action of an element of the appropriate point group followed optionally by a translation. A space group is thus some combination of the translational symmetry of aunit cell (includinglattice centering), the point group symmetry operations ofreflection,rotation andimproper rotation (also called rotoinversion), and thescrew axis andglide plane symmetry operations. The combination of all these symmetry operations results in a total of 230 different space groups describing all possible crystal symmetries.

The number of replicates of theasymmetric unit in a unit cell is thus the number of lattice points in the cell times the order of the point group. This ranges from 1 in the case of space group P1 to 192 for a space group like Fm3m, theNaCl structure.

Elements fixing a point

[edit]

The elements of the space group fixing a point of space are the identity element, reflections, rotations andimproper rotations, includinginversion points.

Translations

[edit]

The translations form a normal abelian subgroup ofrank 3, called the Bravais lattice (so named after French physicistAuguste Bravais). There are 14 possible types of Bravais lattice. Thequotient of the space group by the Bravais lattice is a finite group which is one of the 32 possiblepoint groups.

Glide planes

[edit]

Aglide plane is a reflection in a plane, followed by a translation parallel with that plane. This is noted bya{\displaystyle a},b{\displaystyle b}, orc{\displaystyle c}, depending on which axis the glide is along. There is also then{\displaystyle n} glide, which is a glide along the half of a diagonal of a face, and thed{\displaystyle d} glide, which is a fourth of the way along either a face or space diagonal of the unit cell. The latter is called the diamond glide plane as it features in thediamond structure. In 17 space groups, due to the centering of the cell, the glides occur in two perpendicular directions simultaneously,i.e. the same glide plane can be calledb orc,a orb,a orc. For example, group Abm2 could be also called Acm2, group Ccca could be called Cccb. In 1992, it was suggested to use symbole for such planes. The symbols for five space groups have been modified:

Space group no.3941646768
New symbolAem2Aea2CmceCmmeCcce
Old SymbolAbm2Aba2CmcaCmmaCcca

Screw axes

[edit]

Ascrew axis is a rotation about an axis, followed by a translation along the direction of the axis. These are noted by a number,n, to describe the degree of rotation, where the number is how many operations must be applied to complete a full rotation (e.g., 3 would mean a rotation one third of the way around the axis each time). The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. So, 21 is a twofold rotation followed by a translation of 1/2 of the lattice vector.

General formula

[edit]

The general formula for the action of an element of a space group is

y =M.x +D

whereM is its matrix,D is its vector, and where the element transforms pointx into pointy. In general,D =D (lattice) +D(M), whereD(M) is a unique function ofM that is zero forM being the identity. The matricesM form apoint group that is a basis of the space group; the lattice must be symmetric under that point group, but the crystal structure itself may not be symmetric under that point group as applied to any particular point (that is, without a translation). For example, thediamond cubic structure does not have any point where thecubic point group applies.

The lattice dimension can be less than the overall dimension, resulting in a "subperiodic" space group. For (overall dimension, lattice dimension):

Chirality

[edit]

The 65 "Sohncke" space groups, not containing any mirrors, inversion points, improper rotations or glide planes, yieldchiral crystals, not identical to their mirror image; whereas space groups that do include at least one of those give achiral crystals. Achiral molecules sometimes form chiral crystals, but chiral molecules always form chiral crystals, in one of the space groups that permit this.

Among the 65 Sohncke groups are 22 that come in 11enantiomorphic pairs.

Combinations

[edit]

Only certain combinations of symmetry elements are possible in a space group. Translations are always present, and the space group P1 has only translations and the identity element. The presence of mirrors implies glide planes as well, and the presence of rotation axes implies screw axes as well, but the converses are not true. An inversion and a mirror implies two-fold screw axes, and so on.

Notation

[edit]
Further information:List of space groups

There are at least ten methods of naming space groups. Some of these methods can assign several different names to the same space group, so altogether there are many thousands of different names.

Number
TheInternational Union of Crystallography publishes tables of all space group types, and assigns each a unique number from 1 to 230. The numbering is arbitrary, except that groups with the same crystal system or point group are given consecutive numbers.
International symbol notation
Hermann–Mauguin notation
The Hermann–Mauguin (or international) notation describes the lattice and some generators for the group. It has a shortened form called theinternational short symbol, which is the one most commonly used in crystallography, and usually consists of a set of four symbols. The first describes the centering of theBravais lattice (P,A,C,I,R orF). The next three describe the most prominent symmetry operation visible when projected along one of the high symmetry directions of the crystal. These symbols are the same as used inpoint groups, with the addition of glide planes and screw axis, described above. By way of example, the space group ofquartz is P3121, showing that it exhibits primitive centering of the motif (i.e., once per unit cell), with a threefold screw axis and a twofold rotation axis. Note that it does not explicitly contain thecrystal system, although this is unique to each space group (in the case ofP3121, it is trigonal).
In the international short symbol the first symbol (31 in this example) denotes the symmetry along the major axis (c-axis in trigonal cases), the second (2 in this case) along axes of secondary importance (a and b) and the third symbol the symmetry in another direction. In the trigonal case there also exists a space group P3112. In this space group the twofold axes are not along the a and b-axes but in a direction rotated by 30°.
The international symbols and international short symbols for some of the space groups were changed slightly between 1935 and 2002, so several space groups have 4 different international symbols in use.

The viewing directions of the 7 crystal systems are shown as follows.

Position in the symbolTriclinicMonoclinicOrthorhombicTetragonalTrigonalHexagonalCubic
1baccca
2baaa[111]
3c[110][210][210][110]
Hall notation[7]
Space group notation with an explicit origin. Rotation, translation and axis-direction symbols are clearly separated and inversion centers are explicitly defined. The construction and format of the notation make it particularly suited to computer generation of symmetry information. For example, group number 3 has three Hall symbols: P 2y (P 1 2 1), P 2 (P 1 1 2), P 2x (P 2 1 1).
Schönflies notation
The space groups with given point group are numbered by 1, 2, 3, ... (in the same order as their international number) and this number is added as a superscript to the Schönflies symbol for the point group. For example, groups numbers 3 to 5 whose point group isC2 have Schönflies symbolsC1
2
,C2
2
,C3
2
.
Fedorov notation
Shubnikov symbol
Strukturbericht designation
A related notation for crystal structures given a letter and index:A Elements (monatomic),B for AB compounds,C for AB2 compounds,D for Am Bn compounds, (E,F, ...,K More complex compounds),L Alloys,O Organic compounds,S Silicates. Some structure designation share the same space groups. For example, space group 225 is A1, B1, and C1. Space group 221 is Ah, and B2.[8] However, crystallographers would not use Strukturbericht notation to describe the space group, rather it would be used to describe a specific crystal structure (e.g. space group + atomic arrangement (motif)).
Orbifold notation (2D)
Fibrifold notation (3D)
As the name suggests, the orbifold notation describes the orbifold, given by the quotient of Euclidean space by the space group, rather than generators of the space group. It was introduced byConway andThurston, and is not used much outside mathematics. Some of the space groups have several different fibrifolds associated to them, so have several different fibrifold symbols.
Coxeter notation
Spatial and point symmetry groups, represented as modifications of the pure reflectionalCoxeter groups.
Geometric notation[9]
Ageometric algebra notation.

Classification systems

[edit]

There are (at least) 10 different ways to classify space groups into classes. The relations between some of these are described in the following table. Each classification system is a refinement of the ones below it. To understand an explanation given here it may be necessary to understand the next one down.

(Crystallographic) space group types (230 in three dimensions)
Two space groups, considered as subgroups of the group ofaffine transformations of space, have the same space group type if they are the sameup to anaffine transformation of space that preservesorientation. Thus e.g. a change of angle between translation vectors does not affect the space group type if it does not add or remove any symmetry. A more formal definition involves conjugacy (seeSymmetry group). In three dimensions, for 11 of the affine space groups, there is no chirality-preserving (i.e. orientation-preserving) map from the group to its mirror image, so if one distinguishes groups from their mirror images, these each split into two cases (such as P41 and P43). So, instead of the 54 affine space groups that preserve chirality, there are 54 + 11 = 65 space group types that preserve chirality (theSohncke groups). For most chiral crystals, the twoenantiomorphs belong to the same crystallographic space group, such as P213 forFeSi,[10] but for others, such asquartz, they belong to two enantiomorphic space groups.
Affine space group types (219 in three dimensions)
Two space groups, considered as subgroups of the group of affine transformations of space, have the same affine space group type if they are the same up to an affine transformation, even if that inverts orientation. The affine space group type is determined by the underlying abstract group of the space group. In three dimensions, Fifty-four of the affine space group types preserve chirality and give chiral crystals. The two enantiomorphs of a chiral crystal have the same affine space group.
Arithmetic crystal classes (73 in three dimensions)
Sometimes called Z-classes. These are determined by the point group together with the action of the point group on the subgroup of translations. In other words, the arithmetic crystal classes correspond to conjugacy classes of finite subgroup of the general linear group GLn(Z) over the integers. A space group is calledsymmorphic (orsplit) if there is a point such that all symmetries are the product of a symmetry fixing this point and a translation. Equivalently, a space group is symmorphic if it is asemidirect product of its point group with its translation subgroup. There are 73 symmorphic space groups, with exactly one in each arithmetic crystal class. There are also 157 nonsymmorphic space group types with varying numbers in the arithmetic crystal classes.

Arithmetic crystal classes may be interpreted as different orientations of the point groups in the lattice, with the group elements' matrix components being constrained to have integer coefficients in lattice space. This is rather easy to picture in the two-dimensional,wallpaper group case. Some of the point groups have reflections, and the reflection lines can be along the lattice directions, halfway in between them, or both.

  • None: C1: p1; C2: p2; C3: p3; C4: p4; C6: p6
  • Along: D1: pm, pg; D2: pmm, pmg, pgg; D3: p31m
  • Between: D1: cm; D2: cmm; D3: p3m1
  • Both: D4: p4m, p4g; D6: p6m
(geometric)Crystal classes (32 in three dimensions)Bravais flocks (14 in three dimensions)
Sometimes called Q-classes. The crystal class of a space group is determined by its point group: the quotient by the subgroup of translations, acting on the lattice. Two space groups are in the same crystal class if and only if their point groups, which are subgroups of GLn(Z), are conjugate in the larger group GLn(Q).These are determined by the underlying Bravais lattice type.

These correspond to conjugacy classes of lattice point groups in GLn(Z), where the lattice point group is the group of symmetries of the underlying lattice that fix a point of the lattice, and contains the point group.

Crystal systems (7 in three dimensions)Lattice systems (7 in three dimensions)
Crystal systems are an ad hoc modification of the lattice systems to make them compatible with the classification according to point groups. They differ from crystal families in that the hexagonal crystal family is split into two subsets, called the trigonal and hexagonal crystal systems. The trigonal crystal system is larger than the rhombohedral lattice system, the hexagonal crystal system is smaller than the hexagonal lattice system, and the remaining crystal systems and lattice systems are the same.The lattice system of a space group is determined by the conjugacy class of the lattice point group (a subgroup of GLn(Z)) in the larger group GLn(Q). In three dimensions the lattice point group can have one of the 7 different orders 2, 4, 8, 12, 16, 24, or 48. The hexagonal crystal family is split into two subsets, called the rhombohedral and hexagonal lattice systems.
Crystal families (6 in three dimensions)
The point group of a space group does not quite determine its lattice system, because occasionally two space groups with the same point group may be in different lattice systems. Crystal families are formed from lattice systems by merging the two lattice systems whenever this happens, so that the crystal family of a space group is determined by either its lattice system or its point group. In 3 dimensions the only two lattice families that get merged in this way are the hexagonal and rhombohedral lattice systems, which are combined into the hexagonal crystal family. The 6 crystal families in 3 dimensions are called triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, and cubic. Crystal families are commonly used in popular books on crystals, where they are sometimes called crystal systems.

Conway, Delgado Friedrichs, and Huson et al. (2001) gave another classification of the space groups, called afibrifold notation, according to thefibrifold structures on the correspondingorbifold. They divided the 219 affine space groups into reducible and irreducible groups. The reducible groups fall into 17 classes corresponding to the 17wallpaper groups, and the remaining 35 irreducible groups are the same as thecubic groups and are classified separately.

In other dimensions

[edit]

Bieberbach's theorems

[edit]

Inn dimensions, an affine space group, orBieberbach group, is a discrete subgroup of isometries ofn-dimensional Euclidean space with a compact fundamental domain. Bieberbach (1911,1912) proved that the subgroup of translations of any such group containsn linearly independent translations, and is a freeabelian subgroup of finite index, and is also the unique maximal normal abelian subgroup. He also showed that in any dimensionn there are only a finite number of possibilities for the isomorphism class of the underlying group of a space group, and moreover the action of the group on Euclidean space is unique up to conjugation by affine transformations. This answers part ofHilbert's eighteenth problem.Zassenhaus (1948) showed that conversely any group that is the extension[when defined as?] ofZn by a finite groupacting faithfully is anaffine space group. Combining these results shows that classifying space groups inn dimensions up to conjugation by affine transformations is essentially the same as classifying isomorphism classes for groups that are extensions ofZn by a finite group acting faithfully.

It is essential in Bieberbach's theorems to assume that the group acts as isometries; the theorems do not generalize to discrete cocompact groups of affine transformations of Euclidean space. A counter-example is given by the 3-dimensional Heisenberg group of the integers acting by translations on the Heisenberg group of the reals, identified with 3-dimensional Euclidean space. This is a discrete cocompact group of affine transformations of space, but does not contain a subgroupZ3.

Classification in small dimensions

[edit]

This table gives the number of space group types in small dimensions, including the numbers of various classes of space group. The numbers of enantiomorphic pairs are given in parentheses.

DimensionsCrystal families,OEISsequence A004032Crystal systems,OEISsequence A004031Bravais lattices,OEISsequence A256413Abstract crystallographic point groups,OEISsequence A006226Geometric crystal classes, Q-classes, crystallographic point groups,OEISsequence A004028Arithmetic crystal classes, Z-classes,OEISsequence A004027Affine space group types,OEISsequence A004029Crystallographic space group types,OEISsequence A006227
0[a]11111111
1[b]11122222
2[c]445910131717
3[d]6714183273219 (+11)230
4[e]23 (+6)33 (+7)64 (+10)118227 (+44)710 (+70)4783 (+111)4894
5[f]32591892399556079222018 (+79)222097
6[g]912518411594710385308 (+?)28927915 (+?)?
  1. ^Trivial group
  2. ^One is the group of integers and the other is theinfinite dihedral group; seesymmetry groups in one dimension.
  3. ^These2D space groups are also calledwallpaper groups orplane groups.
  4. ^In 3D, there are 230 crystallographic space group types, which reduces to 219 affine space group types because of some types being different from their mirror image; these are said to differ byenantiomorphous character (e.g. P3112 and P3212). Usuallyspace group refers to 3D. They were enumerated independently byBarlow (1894),Fedorov (1891a) andSchönflies (1891).
  5. ^The 4895 4-dimensional groups were enumerated by Harold Brown, Rolf Bülow, and Joachim Neubüser et al. (1978)Neubüser, Souvignier & Wondratschek (2002) corrected the number of enantiomorphic groups from 112 to 111, so total number of groups is4783 + 111 = 4894. There are 44 enantiomorphic point groups in 4-dimensional space. If we consider enantiomorphic groups as different, the total number of point groups is227 + 44 = 271.
  6. ^Plesken & Schulz (2000) enumerated the ones of dimension 5.Souvignier (2003) counted the enantiomorphs.
  7. ^Plesken & Schulz (2000) enumerated the ones of dimension 6, later the corrected figures were found.[11] Initially published number of 826 Lattice types inPlesken & Hanrath (1984) was corrected to 841 inOpgenorth, Plesken & Schulz (1998). See alsoJanssen et al. (2002).Souvignier (2003) counted the enantiomorphs, but that paper relied on old erroneous CARAT data for dimension 6.

Magnetic groups and time reversal

[edit]
Main article:Magnetic space group

In addition to crystallographic space groups there are also magnetic space groups (also called two-color (black and white) crystallographic groups orShubnikov groups). These symmetries contain an element known as time reversal. They treat time as an additional dimension, and the group elements can include time reversal as reflection in it. They are of importance inmagnetic structures that contain ordered unpaired spins, i.e.ferro-,ferri- orantiferromagnetic structures as studied byneutron diffraction. The time reversal element flips a magnetic spin while leaving all other structure the same and it can be combined with a number of other symmetry elements. Including time reversal there are 1651 magnetic space groups in 3D (Kim 1999, p.428). It has also been possible to construct magnetic versions for other overall and lattice dimensions (Daniel Litvin's papers, (Litvin 2008), (Litvin 2005)). Frieze groups are magnetic 1D line groups and layer groups are magnetic wallpaper groups, and the axial 3D point groups are magnetic 2D point groups. Number of original and magnetic groups by (overall, lattice) dimension:(Palistrant 2012)(Souvignier 2006)

Overall
dimension
Lattice
dimension
Ordinary groupsMagnetic groups
NameSymbolCountSymbolCount
00Zero-dimensional symmetry groupG0{\displaystyle G_{0}}1G01{\displaystyle G_{0}^{1}}2
10One-dimensional point groupsG10{\displaystyle G_{10}}2G101{\displaystyle G_{10}^{1}}5
1One-dimensional discrete symmetry groupsG1{\displaystyle G_{1}}2G11{\displaystyle G_{1}^{1}}7
20Two-dimensional point groupsG20{\displaystyle G_{20}}10G201{\displaystyle G_{20}^{1}}31
1Frieze groupsG21{\displaystyle G_{21}}7G211{\displaystyle G_{21}^{1}}31
2Wallpaper groupsG2{\displaystyle G_{2}}17G21{\displaystyle G_{2}^{1}}80
30Three-dimensional point groupsG30{\displaystyle G_{30}}32G301{\displaystyle G_{30}^{1}}122
1Rod groupsG31{\displaystyle G_{31}}75G311{\displaystyle G_{31}^{1}}394
2Layer groupsG32{\displaystyle G_{32}}80G321{\displaystyle G_{32}^{1}}528
3Three-dimensional space groupsG3{\displaystyle G_{3}}230G31{\displaystyle G_{3}^{1}}1651
40Four-dimensional point groupsG40{\displaystyle G_{40}}271G401{\displaystyle G_{40}^{1}}1202
1G41{\displaystyle G_{41}}343
2G42{\displaystyle G_{42}}1091
3G43{\displaystyle G_{43}}1594
4Four-dimensional discrete symmetry groupsG4{\displaystyle G_{4}}4894G41{\displaystyle G_{4}^{1}}62227

Table of space groups in 2 dimensions (wallpaper groups)

[edit]

Table of thewallpaper groups using the classification of the 2-dimensional space groups:

Crystal system,
Bravais lattice
Geometric class,point groupArithmetic
class
Wallpaper groups (cell diagram)
Int'lSchön.OrbifoldCox.Ord.
Oblique
1C1(1)[ ]+1Nonep1
(1)
 
2C2(22)[2]+2Nonep2
(2222)
 
Rectangular
mD1(*)[ ]2Alongpm
(**)
pg
(××)
2mmD2(*22)[2]4Alongpmm
(*2222)
pmg
(22*)
Centeredrectangular
mD1(*)[ ]2Betweencm
(*×)
 
2mmD2(*22)[2]4Betweencmm
(2*22)
pgg
(22×)
Square
4C4(44)[4]+4Nonep4
(442)
 
4mmD4(*44)[4]8Bothp4m
(*442)
p4g
(4*2)
Hexagonal
3C3(33)[3]+3Nonep3
(333)
 
3mD3(*33)[3]6Betweenp3m1
(*333)
p31m
(3*3)
6C6(66)[6]+6Nonep6
(632)
 
6mmD6(*66)[6]12Bothp6m
(*632)
 

For each geometric class, the possible arithmetic classes are

  • None: no reflection lines
  • Along: reflection lines along lattice directions
  • Between: reflection lines halfway in between lattice directions
  • Both: reflection lines both along and between lattice directions

Table of space groups in 3 dimensions

[edit]
Further information:List of space groups
Crystal system,
(count),
Bravais lattice
Point groupSpace groups (international short symbol)
Int'lSchön.OrbifoldCox.Ord.
1Triclinic
(2)
1C111[ ]+1P1
21Ci[2+,2+]2P1
3–5Monoclinic
(13)
2C222[2]+2P2, P21
C2
6–9mCs*11[ ]2Pm, Pc
Cm, Cc
10–152/mC2h2*[2,2+]4P2/m, P21/m
C2/m, P2/c, P21/c
C2/c
16–24Orthorhombic
(59)

222D2222[2,2]+4P222, P2221, P21212, P212121
C2221, C222
F222
I222, I212121
25–46mm2C2v*22[2]4Pmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2, Pmn21, Pba2, Pna21, Pnn2
Cmm2, Cmc21, Ccc2, Amm2, Aem2, Ama2, Aea2
Fmm2, Fdd2
Imm2, Iba2, Ima2
47–74mmmD2h*222[2,2]8Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma
Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce
Fmmm, Fddd
Immm, Ibam, Ibca, Imma
75–80Tetragonal
(68)

4C444[4]+4P4, P41, P42, P43, I4, I41
81–824S4[2+,4+]4P4, I4
83–884/mC4h4*[2,4+]8P4/m, P42/m, P4/n, P42/n
I4/m, I41/a
89–98422D4224[2,4]+8P422, P4212, P4122, P41212, P4222, P42212, P4322, P43212
I422, I4122
99–1104mmC4v*44[4]8P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc
I4mm, I4cm, I41md, I41cd
111–12242mD2d2*2[2+,4]8P42m, P42c, P421m, P421c, P4m2, P4c2, P4b2, P4n2
I4m2, I4c2, I42m, I42d
123–1424/mmmD4h*224[2,4]16P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/ncc, P42/mmc, P42/mcm, P42/nbc, P42/nnm, P42/mbc, P42/mnm, P42/nmc, P42/ncm
I4/mmm, I4/mcm, I41/amd, I41/acd
143–146Trigonal
(25)
3C333[3]+3P3, P31, P32
R3
147–1483S6[2+,6+]6P3, R3
149–15532D3223[2,3]+6P312, P321, P3112, P3121, P3212, P3221
R32
156–1613mC3v*33[3]6P3m1, P31m, P3c1, P31c
R3m, R3c
162–1673mD3d2*3[2+,6]12P31m, P31c, P3m1, P3c1
R3m, R3c
168–173Hexagonal
(27)
6C666[6]+6P6, P61, P65, P62, P64, P63
1746C3h3*[2,3+]6P6
175–1766/mC6h6*[2,6+]12P6/m, P63/m
177–182622D6226[2,6]+12P622, P6122, P6522, P6222, P6422, P6322
183–1866mmC6v*66[6]12P6mm, P6cc, P63cm, P63mc
187–1906m2D3h*223[2,3]12P6m2, P6c2, P62m, P62c
191–1946/mmmD6h*226[2,6]24P6/mmm, P6/mcc, P63/mcm, P63/mmc
195–199Cubic
(36)


23T332[3,3]+12P23, F23, I23
P213, I213
200–206m3Th3*2[3+,4]24Pm3, Pn3, Fm3, Fd3, Im3, Pa3, Ia3
207–214432O432[3,4]+24P432, P4232
F432, F4132
I432
P4332, P4132, I4132
215–22043mTd*332[3,3]24P43m, F43m, I43m
P43n, F43c, I43d
221–230m3mOh*432[3,4]48Pm3m, Pn3n, Pm3n, Pn3m
Fm3m, Fm3c, Fd3m, Fd3c
Im3m, Ia3d

Note: Ane plane is a double glide plane, one having glides in two different directions. They are found in seven orthorhombic, five tetragonal and five cubic space groups, all with centered lattice. The use of the symbole became official withHahn (2002).

The lattice system can be found as follows. If the crystal system is not trigonal then the lattice system is of the same type. If the crystal system is trigonal, then the lattice system is hexagonal unless the space group is one of the seven in therhombohedral lattice system consisting of the 7 trigonal space groups in the table above whose name begins with R. (The term rhombohedral system is also sometimes used as an alternative name for the whole trigonal system.) Thehexagonal lattice system is larger than the hexagonal crystal system, and consists of the hexagonal crystal system together with the 18 groups of the trigonal crystal system other than the seven whose names begin with R.

TheBravais lattice of the space group is determined by the lattice system together with the initial letter of its name, which for the non-rhombohedral groups is P, I, F, A or C, standing for the principal, body centered, face centered, A-face centered or C-face centered lattices. There are seven rhombohedral space groups, with initial letter R.

Derivation of the crystal class from the space group

[edit]
  1. Leave out the Bravais type
  2. Convert all symmetry elements with translational components into their respective symmetry elements without translation symmetry (Glide planes are converted into simple mirror planes; Screw axes are converted into simple axes of rotation)
  3. Axes of rotation, rotoinversion axes and mirror planes remain unchanged.

References

[edit]
  1. ^Hiller, Howard (1986)."Crystallography and cohomology of groups".The American Mathematical Monthly.93 (10):765–779.doi:10.2307/2322930.JSTOR 2322930. Archived fromthe original on 2022-09-29. Retrieved2015-01-31.
  2. ^Fedorov (1891b).
  3. ^Sohncke, Leonhard (1879).Die Entwicklung einer Theorie der Krystallstruktur [The Development of a Theory of Crystal Structure] (in German). Leipzig, Germany:B.G. Teubner.
  4. ^Fedorov (1891a).
  5. ^Schönflies, Arthur M. (1891).Krystallsysteme und Krystallstruktur [Crystal Systems and Crystal Structure] (in German). Leipzig, Germany: B.G. Teubner.
  6. ^von Fedorow, E. (1892)."Zusammenstellung der kirstallographischen Resultate des Herrn Schoenflies und der meinigen" [Compilation of the crystallographic results of Mr. Schoenflies and of mine].Zeitschrift für Krystallographie und Mineralogie (in German).20:25–75.
  7. ^Sydney R. Hall; Ralf W. Grosse-Kunstleve."Concise Space-Group Symbols".
  8. ^"Strukturbericht - Wikimedia Commons".commons.wikimedia.org.
  9. ^David Hestenes; Jeremy Holt (January 2007)."The Crystallographic Space Groups in Geometric Algebra"(PDF).Journal of Mathematical Physics.48 (2): 023514.Bibcode:2007JMP....48b3514H.doi:10.1063/1.2426416.
  10. ^J.C.H. Spence and J.M. Zuo (1994)."On the minimum number of beams needed to distinguish enantiomorphs in X-ray and electron diffraction".Acta Crystallographica Section A.50 (5):647–650.Bibcode:1994AcCrA..50..647S.doi:10.1107/S0108767394002850.
  11. ^"The CARAT Homepage". Retrieved11 May 2015.

External links

[edit]
Wikimedia Commons has media related toSpace groups.
Basic notions
Types of groups
Discrete groups
Lie groups
Infinite dimensional groups
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Space_group&oldid=1321601384"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp