Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Soil biology

From Wikipedia, the free encyclopedia
(Redirected fromSoil life)
Study of living things in soil
For a detailed table of life in soil, seesoil life.
Soil biology is the study of microbial and faunal activity in the soil. This photo shows the activity of both.

Soil biology is the study ofmicrobial andfaunal activity andecology insoil.Soil life,soil biota,soil fauna, oredaphon is a collective term that encompasses allorganisms that spend a significant portion of theirlife cycle within a soil profile, or at the soil-litter interface.These organisms includeearthworms,nematodes,protozoa,fungi,bacteria, differentarthropods, as well as some reptiles (such assnakes), and species of burrowing mammals likegophers,moles andprairie dogs.[1] Soil biology plays a vital role in determining many soil characteristics. The decomposition oforganic matter by soil organisms has an immense influence onsoil fertility,plant growth,soil structure, andcarbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soilecosystems.[2][3]

Overview

[edit]

The soil is home to circa 59% of the world'sbiodiversity.[4] The links between soil organisms and soil functions are complex. The interconnectedness and complexity of thissoil 'food web' means any appraisal of soil function must necessarily take into account interactions with the livingcommunities that exist within the soil.[5]Soil organisms break downorganic matter, makingnutrients available for uptake by plants and other organisms.[6] The nutrients stored in the bodies of soil organisms prevent nutrient loss byleaching, in particular for nitrogen and phosphorus.[7] Microbial exudates act to maintainsoil structure,[8] andearthworms are important inbioturbation.[9] However, critical aspects about how these populations function and interact are unclear. The discovery ofglomalin in 1996 indicates that the knowledge to correctly answer some of the most basic questions about thebiogeochemical cycle in soils is lacking.[10] There is much work ahead to gain a better understanding of theecological role of soil biological components in thebiosphere.[11]

In balanced soil, plants grow in an active and steady environment. Thenutrient content of the soil and itsstructure are important for plant well-being, but it is soil life that powersnutrient cycles and providessoil fertility.[12] Without the activities of soil organisms,organic materials would accumulate as undecayed litter at the soil surface, and there would be nohumus[13] and nonutrients available for plants.[14]

The soil biota includes:

Of these, bacteria, archaea and fungi play key roles in maintaining a healthy soil.[15] They act asdecomposers that break down organic materials to producedetritus and other breakdown products.[16] Burrowing soildetritivores, likeearthworms, known asecosystem engineers, ingest detritus and decompose it, while building a good granularsoil structure and offering a habitat for various soil organisms.[17]Saprotrophs, well represented by fungi, archaea and bacteria, extract soluble nutrients from detritus andsoil organic matter, in particular in therhizosphere.[18] All other organisms living in the soil, each at its position along interconnected trophic networks (also calledfoodwebs), contribute to good health of the soil ecosystem.[19]

Scope

[edit]

Soil biology involves work in the following areas:

Complementary disciplinary approaches are necessarily utilized which involvemolecular biology,genetics,ecophysiology,biogeography,ecology, soil processes,organic matter,nutrient cycling[20] andlandscape ecology.

Bacteria

[edit]

Bacteria are single-cell organisms and the most numerous denizens ofagricultural fields, with populations ranging from 100 million to 3 billion in a 'teaspoon' of productive soil.[21] They are capable of very rapid reproduction bybinary fission (dividing into two) in favourable conditions. When in itsexponential phase of growthEscherichia coli is thus capable of producing 1milliard more in just 1 hour.[22] Most soil bacteria live close to plant roots in therhizosphere and are often referred to asrhizobacteria, helping plants to grow.[23] Bacteria live insoil water, including the film of moisture surrounding soil particles, where some are able to swim by means offlagella.[24] The majority of the beneficial soil-dwelling bacteria need oxygen (and are thus termedaerobic bacteria), whilst those that do not require air are referred to asanaerobic, and tend to causeputrefaction of dead organic matter.[25] Aerobic bacteria are most active in asoil that is moist (but not saturated, as this will deprive aerobic bacteria of the air that they require), and neutralsoil pH, and where there is plenty of food (carbohydrates andmicronutrients from organic matter) available.[26] Hostile conditions will not completely kill bacteria; rather, the bacteria will stop growing and get into a dormant stage, often in the form of clay-coated quiescent colonies,[27] and those individuals withpre-adaptivemutations or rapidly evolving better-adaptedtraits may compete better in the new conditions.[28] SomeGram-positive bacteria (e.g.Bacillus,Clostridium) produce spores in order to wait for more favourable circumstances,[29] andGram-negative bacteria get into a "nonculturable" resting stage.[30] Bacteria are colonized by persistentviral agents (bacteriophages) that replicate in bacterial hosts and promotegene transfer,[31] a property of bacteria-virus relationships now currently used ingenetic engineering.[32]

From theorganic gardener's point of view, the important roles that bacteria play are:

The nitrogen cycle

Nitrification

[edit]

Nitrification is a vital part of thenitrogen cycle, wherein certainchemolithotrophicnitrifying bacteria (e.g.Nitrosomonas), calledautotrophicnitrifiers (manufacturing their owncarbohydrate supply without using the process ofphotosynthesis) are able to transformnitrogen in the form ofammonium, which is produced by the decomposition ofproteins, intonitrates, available to growing plants and once again converted to proteins.[33] Other nitrifying bacteria (e.g.Arthrobacter) are able ofheterotrophic nitrification, a still badly knownbiochemical process of soil nitrogen transformation.[34]

Nitrogen fixation

[edit]

In another part of thenitrogen cycle, the process ofnitrogen fixation constantly puts additional nitrogen into biological circulation. This is carried out by free-living nitrogen-fixing (diazotroph) bacteria in the soil or water such asAzotobacter andheterocyst-bearingcyanobacteria (blue-green algae), or by those that live in closesymbiosis withlegumes, such asrhizobia, or withactinorhizal plants, such asFrankia. These form colonies in nodules they create on the roots ofpeas,beans,Casuarina and relatedflowering plants. Nitrogen-fixing bacteria are able to convert nitrogen from the atmosphere into nitrogen-containing organic substances,[35] and thus play a decisive role in incipient soil formation.[36]

Denitrification

[edit]

While nitrogen fixation converts nitrogen from theatmosphere into organic compounds, a series of processes calleddenitrification returns some amount of nitrogen to the atmosphere.Denitrifying bacteria tend to beanaerobes, orfacultatively anaerobes (can alter between the oxygen dependent and oxygen independent types of metabolisms), includingAchromobacter andPseudomonas. The denitrification process caused by oxygen-free conditions converts nitrates and nitrites in soil into nitrogen gas or into gaseous compounds such asnitrous oxide ornitric oxide. In excess, denitrification can lead to overall losses of available soil nitrogen and subsequent loss ofsoil fertility.[37] An excess of nitrogenfertilizers may cause denitrification[38] in addition tonitrate loss bypercolation to theaquifer.[39] However, fixed nitrogen may circulate many times between organisms and the soil before denitrification returns it to the atmosphere, as shown by the diagram above illustrating thenitrogen cycle.

Actinomycetota

[edit]

Actinomycetota (actinomycetes, actinobacteria) are critical in the decomposition oforganic matter and inhumus formation. They specialize in breaking downcellulose andlignin[40] along with the toughchitin[41] found in theexoskeletons ofarthropods. Their various production ofvolatilemetabolites is responsible for the sweetearthy aroma associated with a good healthy soil.[42] They require plenty of air and a pH between 6.0 and 7.5, but are more tolerant of dry conditions than most other bacteria and fungi.[43]

Fungi

[edit]

A gram of garden soil can contain around one millionfungi, such asyeasts andmoulds, and around 700 km fungalhyphae can live in 1 g of soil.[44] Fungi have nochlorophyll, and are not able tophotosynthesise. They cannot use atmospheric carbon dioxide as a source of carbon, therefore they arechemo-heterotrophic, meaning that, likeanimals, they require a chemical source of energy rather than being able to use light as an energy source, as well as organic substrates to get carbon for growth and development. Given these requirements and the development of a dense hyphal network (mycelium) they actively participate to the degradation of freshly deposited organic remains and their transformation inhumus (humification) andcarbon dioxide (mineralization).[45]

Many fungi areparasitic, often causingdisease to their living host plant, although some have beneficial relationships with living plants, as illustrated below. In terms of soil and humus creation, the most important fungi tend to besaprotrophic; that is, they live on dead or decaying organic matter, thus breaking it down and converting it to mineral forms (e.g.nitrate,ammonium,phosphate) that are available to the higher plants. A succession of fungi species will colonise the dead matter, beginning with those that usesugars andstarches, which are succeeded by those that are able to break downcellulose andlignins.[46]

Fungi spread underground by sending long thin threads known asmycelium throughout the soil; these threads can be observed throughout many soils andcompost heaps. From the mycelia the fungi is able to throw up its fruiting bodies, the visible part above the soil (e.g.,mushrooms,toadstools, andpuffballs), which may contain millions ofspores. When thefruiting body bursts, these spores are dispersed through the air to settle in fresh environments, and are able to liedormant for up to years until the right conditions for their activation arise or the right food is made available.[47] Fungal spores are dispersed by wind,[48] water,[49] but also by a variety of fungal-feeding animals, from small invertebrates (e.g. springtails)[50] to big mammals (e.g. wild boars),[51] helping them to colonize new, sometimes remote environments, hence the cosmopolitan distribution of many fungal species.[52]

Mycorrhizae

[edit]

Those fungi that are able to livesymbiotically with living plants, creating a relationship that is beneficial to both, are known asmycorrhizae (frommyco meaningfungus andrhiza meaningroot). In mycorrhizae plant roots are invaded by themycelia of the mycorrhizal fungus, which lives partly in the soil and partly in the root, and may either penetrate the rootcortex without entering its cells (forming theHartig net) and cover the root as a sheath (ectomycorrhizae) or be present in cortical cells in the form of arbuscules (arbuscular mycorrhizae). The mycorrhizal fungus obtains thecarbohydrates that it requires from the root,[53] in return providing the plant with nutrients, including nitrogen[54] and phosphorus,[55] and with moisture.[56] Later the plant roots will also absorb the mycelium into its own tissues.[57] In some cases mycorrhizae could provide their host, either directly or indirectly, with nutrients issued from the degradation of more complex soil organic matter (humus).[58] Mycorrhizae can also benefit nutrients (other thansugar carbon) and moisture from the host,[59][60] and exchange nutrients (including carbon) and moisture between plants through commonmycorrhizal networks.[61][62][63]Chemical signalling between plants through commonmycorrhizal networks, although a beautiful concept, is still a matter of conjecture, more research being needed.[64][65]

Beneficial mycorrhizal associations (eitherectomycorrhizae orarbuscular mycorrhizae) are to be found in many of our edible and flowering crops, to the exception ofBrassicaceae (e.g.cabbage,turnip) as well as in the majority oftree species, especially inforests andwoodlands, withEricaceae (e.g.bracken,bilberry) harbouring a special type, calledericoid mycorrhizae.[66] Tree mycorrhizae create a fine underground mesh that extends greatly beyond the limits of the tree's roots, greatly increasing their feeding range and actually causing neighbouring trees to become physically interconnected.[67] The benefits of mycorrhizal relations to their plant partners are not limited to nutrients, but can be essential for plant reproduction. In situations where little light is able to reach theforest floor, a youngseedling cannot obtain sufficient light tophotosynthesise for itself and will not grow properly, causing a deficit of regeneration.[68] But, if the ground is underlain by a mycorrhizal mat, then the developing seedling will throw down roots that can link with the fungal threads and through them obtain the nutrients it needs.[69]

David Attenborough points out the plant, fungi, animal relationship that creates a "three way harmonious trio" to be found in forestecosystems, wherein the plant/fungi symbiosis is enhanced by animals such as the wild boar, deer, mice, or flying squirrel, which feed upon the fungi's fruiting bodies, including truffles, and cause their further spread.[70] A greater understanding of the complex relationships that pervade natural systems is one of the major justifications of theorganic gardener, in refraining from the use of artificial chemicals and the damage these might cause.[71]

Recent research has shown thatarbuscular mycorrhizal fungi produceglomalin, a protein that binds soil particles and stores both carbon and nitrogen. These glomalin-related soil proteins are an important part ofsoil organic matter.[72]

Invertebrates

[edit]
Main article:Soil animals

Soil fauna affectsoil formation and soil organic matter dynamically on many spatiotemporal scales.[73]Earthworms,ants andtermites, known asecosystem engineers, mix the soil as they burrow, significantly affecting soil formation and organic matter dynamics.[74] Earthworms ingest soil particles and organic residues, enhancing the availability of plant nutrients in the material that passes through and out of their bodies.[75] By aerating and stirring the soil, and by increasing the stability of soil aggregates, these organisms help to assure the ready infiltration of water.[76] These organisms in the soil also help improvepH levels, bybuffering them around neutrality, an equilibrating process (negative feedback loop) by which fungal activity is favoured inalkaline soils[77] while bacterial activity is favoured inacid soils.[78]

Ants and termites are also often referred to assoil engineers because, when they create their nests, there are several chemical and physical changes made to the soil.[79] Among these changes are increasing presence of the most essential elements like carbon, nitrogen, and phosphorus, elements needed for plant growth.[80] They also can gather soil particles from differing depths of soil and deposit them in other places, leading to the mixing of soil so it is richer with nutrients and other elements.[81][82]

Vertebrates

[edit]
Main article:Soil animals
Gopher sticking out of burrow

The soil is also important to many mammals.Gophers,moles,prairie dogs, and other burrowing animals rely on this soil for protection and food.[83] The animals even give back to the soil as their burrowing creates nutrient-rich patches and allows more water to infiltrate the soil by increasing porosity, thus decreasingrunoff along slopes.[84]

Table of soil life

[edit]

This table includes some familiar types of soil life, coherent with prevalent taxonomy as used in the linked Wikipedia articles.

DomainKingdomPhylumClassOrderFamilyGenus
ProkaryoteBacteriaPseudomonadotaBetaproteobacteriaNitrosomonadalesNitrosomonadaceaeNitrosomonas
ProkaryoteBacteriaPseudomonadotaAlphaproteobacteriaHyphomicrobialesNitrobacteraceaeNitrobacter
ProkaryoteBacteriaPseudomonadotaAlphaproteobacteriaHyphomicrobialesRhizobiaceaeRhizobium[a]
ProkaryoteBacteriaPseudomonadotaGammaproteobacteriaPseudomonadalesAzotobacteraceaeAzotobacter
ProkaryoteBacteriaActinomycetotaActinomycetia
ProkaryoteBacteria"Cyanobacteria (Blue-green algae)
ProkaryoteBacteriaBacillotaClostridiaClostridialesClostridiaceaeClostridium
EukaryoteFungiAscomycotaEurotiomycetesEurotialesTrichocomaceaePenicillium
EukaryoteFungiAscomycotaEurotiomycetesEurotialesTrichocomaceaeAspergillus
EukaryoteFungiAscomycotaSordariomycetesHypocrealesNectriaceaeFusarium
EukaryoteFungiAscomycotaSordariomycetesHypocrealesHypocreaceaeTrichoderma
EukaryoteFungiBasidiomycotaAgaricomycetesCantharellalesCeratobasidiaceaeRhizoctonia
EukaryoteFungiZygomycotaZygomycetesMucoralesMucoraceaeMucor
EukaryoteSAR (clade)HeterokontophytaBacillariophyceae (Diatomea algae)
EukaryoteSAR (clade)HeterokontophytaXanthophyceae (Yellow-green algae)
EukaryoteAlveolata (clade)Ciliophora
EukaryoteAmoebozoa (clade)
EukaryotePlantaeChlorophyta (green algae)Chlorophyceae
EukaryoteAnimaliaNematoda
EukaryoteAnimaliaRotifer
EukaryoteAnimaliaTardigrada
EukaryoteAnimaliaArthropodaEntognathaCollembola
EukaryoteAnimaliaArthropodaEntognathaDiplura
EukaryoteAnimaliaArthropodaEntognathaProtura
EukaryoteAnimaliaArthropodaArachnidaAcarina
EukaryoteAnimaliaArthropodaArachnidaPseudoscorpionida
EukaryoteAnimaliaArthropodaInsectaColeoptera (larvae)
EukaryoteAnimaliaArthropodaInsectaColeopteraCarabidae (Ground beetles)
EukaryoteAnimaliaArthropodaInsectaColeopteraStaphylinidae (Rove beetle)
EukaryoteAnimaliaArthropodaInsectaDiptera (larvae)
EukaryoteAnimaliaArthropodaInsectaHymenopteraFormicidae (Ant)
EukaryoteAnimaliaArthropodaChilopoda (Centipede)
EukaryoteAnimaliaArthropodaDiplopoda (Millipede)
EukaryoteAnimaliaArthropodaSymphyla
EukaryoteAnimaliaArthropodaPauropoda
EukaryoteAnimaliaArthropodaMalacostracaIsopoda (woodlouse)
EukaryoteAnimaliaAnnelidaClitellataHaplotaxidaEnchytraeidae
EukaryoteAnimaliaAnnelidaClitellataHaplotaxidaLumbricidae
EukaryoteAnimaliaMolluscaGastropoda

See also

[edit]

Notes

[edit]
  1. ^SeeRhizobia for a list of other nitrogen-fixing bacteria occupying the similar niche of root nodules.

References

[edit]
  1. ^Blume, Hans-Peter; Brümmer, Gerhard W.; Fleige, Heiner; Horn, Rainer; Kandeler, Ellen; Kögel-Knabner, Ingrid; Kretzschmar, Ruben; Stahr, Karl; Wilke, Berndt-Michael (25 November 2015)."Soil organisms and their habitat". In Blume, Hans-Peter; Brümmer, Gerhard W.; Fleige, Heiner; Horn, Rainer; Kandeler, Ellen; Kögel-Knabner, Ingrid; Kretzschmar, Ruben; Stahr, Karl; Wilke, Berndt-Michael (eds.).Scheffer/Schachtschabel Soil Science. Berlin, Germany:Springer Nature. pp. 87–122.doi:10.1007/978-3-642-30942-7_4.ISBN 978-3-642-30942-7. Retrieved14 July 2025.
  2. ^Huhta, Veikko (4 January 2007)."The role of soil fauna in ecosystems: a historical review".Pedobiologia.50 (6):489–95.Bibcode:2007Pedob..50..489H.doi:10.1016/j.pedobi.2006.08.006. Retrieved14 July 2025.
  3. ^Briones, María Jesús Iglesias (2014)."Soil fauna and soil functions: a jigsaw puzzle".Frontiers in Environmental Science.2 (7).Bibcode:2014FrEnS...2....7B.doi:10.3389/fenvs.2014.00007.
  4. ^Anthony, Mark A.; Bender, S. Franz; Van der Heijden, Marcel G. A. (7 August 2023)."Enumerating soil biodiversity".Proceedings of the National Academy of Sciences of the United States of America.120 (33) e2304663120.Bibcode:2023PNAS..12004663A.doi:10.1073/pnas.2304663120.PMC 10437432.PMID 37549278.
  5. ^Brussaard, Lijbert; Pulleman, Mirjam M.; Ouédraogo, Élisée; Mando, Abdoulaye; Six, Johan (4 January 2007)."Soil fauna and soil function in the fabric of the food web".Pedobiologia.50 (6):447–62.Bibcode:2007Pedob..50..447B.doi:10.1016/j.pedobi.2006.10.007. Retrieved16 July 2025.
  6. ^Whalen, Joann K.; Hamel, Chantal (20 October 2008)."Effects of key soil organisms on nutrient dynamics in temperate agroecosystems".Journal of Crop Improvement.11 (1–2):175–207.doi:10.1300/J411v11n01_09. Retrieved16 July 2025.
  7. ^Bender, S. Franz; Van der Heijden, Marcel G. A. (February 2015)."Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses".Journal of Applied Ecology.52 (1):228–39.Bibcode:2015JApEc..52..228B.doi:10.1111/1365-2664.12351.
  8. ^Czarnes, Sonia; Hallett, Paul D.; Bengough, Anthony Glyn; Young, Iain (September 2000)."Root- and microbial-derived mucilages affect soil structure and water transport".European Journal of Soil Science.51 (3):435–43.Bibcode:2000EuJSS..51..435C.doi:10.1046/j.1365-2389.2000.00327.x. Retrieved16 July 2025.
  9. ^Piron, Denis; Boizard, Hubert; Heddadj, Djilali; Pérès, Guénola; Hallaire, Vincent; Cluzeau, Daniel (November 2017)."Indicators of earthworm bioturbation to improve visual assessment of soil structure".Soil and Tillage Research.173:53–63.Bibcode:2017STilR.173...53P.doi:10.1016/j.still.2016.10.013. Retrieved16 July 2025.
  10. ^Treseder, Kathleen K.; Turner, Katie M. (July 2007)."Glomalin in ecosystems".Soil Science Society of America Journal.71 (4):1257–66.Bibcode:2007SSASJ..71.1257T.doi:10.2136/sssaj2006.0377. Retrieved16 July 2025.
  11. ^Souza, Tancredo (20 May 2022)."Soil organisms and ecological processes". In Souza, Tancredo (ed.).Soil biology in tropical ecosystems. Berlin, Germany:Springer Nature. pp. 37–53.doi:10.1007/978-3-031-00949-5_3.ISBN 978-3-031-00949-5. Retrieved16 July 2025.
  12. ^Stockdale, Elizabeth A.; Goulding, Keith W. T.; George, Timothy S.; Murphy, Deniel V. (9 January 2013)."Soil fertility". In Gregory, Peter J.; Nortcliff, Stephen (eds.).Soil conditions and plant growth. Oxford, United Kingdom:Wiley-Blackwell. pp. 49–85.doi:10.1002/9781118337295.ch3.ISBN 978-1-118-33729-5. Retrieved17 July 2025.
  13. ^Brussaard, Lijbert; Juma, Noorallah G. (1996)."Organisms and humus in soils". In Piccolo, Alessandro (ed.).Humic substances in terrestrial ecosystems. Amsterdam, The Netherlands:Elsevier. pp. 329–59.doi:10.1016/B978-044481516-3/50009-8.ISBN 978-0-444-81516-3. Retrieved17 July 2025.
  14. ^Hopkins, David W.; Dungait, Jennifer A. J. (4 August 2010)."Soil microbiology and nutrient cycling". In Dixon, Geoffrey R.; Tilston, Emma L. (eds.).Soil microbiology and sustainable crop production. Dordrecht, The Netherlands:Springer. pp. 59–80.doi:10.1007/978-90-481-9479-7_3.ISBN 978-90-481-9479-7. Retrieved17 July 2025.
  15. ^Fierer, Noah; Wood, Stephen A.; Bueno de Mesquita, Clifton P. (February 2021)."How microbes can, and cannot, be used to assess soil health"(PDF).Soil Biology and Biochemistry.153 108111.Bibcode:2021SBiBi.15308111F.doi:10.1016/j.soilbio.2020.108111. Retrieved17 July 2025.
  16. ^DeAngelis, Don L. (1992)."Nutrient interactions of detritus and decomposers". In DeAngelis, Don L. (ed.).Dynamics of nutrient cycling and food webs. Population and community biology series. Vol. 9. Dordrecht, The Netherlands:Springer. pp. 123–41.doi:10.1007/978-94-011-2342-6_7.ISBN 978-94-011-2342-6.ISSN 1367-5257. Retrieved18 July 2025.
  17. ^Sharma, Dinesh Kumar; Tomar, Sonam; Chakraborty, Debashis (25 September 2017)."Role of earthworm in improving soil structure and functioning".Current Science.113 (6):1064–71.doi:10.18520/cs/v113/i06/1064-1071. Retrieved18 July 2025.
  18. ^Odelade, Kehinde Abraham; Babalola, Olubukola Oluranti (12 October 2019)."Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity".International Journal of Environmental Research and Public Health.16 (20): 3873.doi:10.3390/ijerph16203873.PMC 6843647.PMID 31614851.
  19. ^Lehmann, Johannes; Bossio, Deborah S.; Kögel-Knabner, Ingrid; Rillig, Matthias C. (25 August 2020)."The concept and future prospects of soil health".Nature Reviews Earth & Environment.1 (10):544–53.Bibcode:2020NRvEE...1..544L.doi:10.1038/s43017-020-0080-8.PMC 7116140.PMID 33015639. Retrieved17 July 2025.
  20. ^Ochoa-Hueso, Raul; Delgado-Baquerizo, Manuel; King, Paul T. A.; Benham, Merryn; Arca, Valentina; Power, Sally Anne (February 2019)."Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition".Soil Biology and Biochemistry.129:144–52.Bibcode:2019SBiBi.129..144O.doi:10.1016/j.soilbio.2018.11.009.S2CID 92606851. Retrieved18 July 2025.
  21. ^Hoorman, James J. (2011)."The role of soil bacteria"(PDF). Columbus, Ohio:Ohio State University. Retrieved18 July 2025.
  22. ^Hagen, Stephen J. (1 December 2010)."Exponential growth of bacteria: constant multiplication through division".American Journal of Physics.78 (12):1290–6.Bibcode:2010AmJPh..78.1290H.doi:10.1119/1.3483278. Retrieved18 July 2025.
  23. ^Lugtenberg, Ben; Kamilova, Faina (October 2009)."Plant-growth-promoting rhizobacteria".Annual Review of Microbiology.63:541–56.doi:10.1146/annurev.micro.62.081307.162918.PMID 19575558. Retrieved18 July 2025.
  24. ^Ramoneda, Josep; Fan, Kunkun; Lucas, Jane M.; Chu, Haiyan; Bissett, Andrew; Strickland, Michael S.; Fierer, Noah (January 2024)."Ecological relevance of flagellar motility in soil bacterial communities".The ISME Journal.18 (1) wrae067.doi:10.1093/ismejo/wrae067.PMC 11095265.PMID 38648266. Retrieved18 July 2025.
  25. ^Forbes, Shari L. (2008)."Decomposition chemistry in a burial environment". In Tibbett, Mark; Carter, Davisd O. (eds.).Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains. Boca Raton, Florida:CRC Press. pp. 203–23.doi:10.1201/9781420069921.ch8.ISBN 978-0-429-24949-5. Retrieved18 July 2025.
  26. ^Linn, D. M.; Doran, John W. (July–August 1984)."Aerobic and anaerobic microbial populations in no-till and plowed soils".Soil Science Society of America Journal.48 (4):794–9.Bibcode:1984SSASJ..48..794L.doi:10.2136/sssaj1984.03615995004800040019x. Retrieved18 July 2025.
  27. ^England, Laura S.; Lee, Hung; Trevors, Jack T. (May 1993)."Bacterial survival in soil: effect of clays and protozoa".Soil Biology and Biochemistry.25 (5):525–31.Bibcode:1993SBiBi..25..525E.doi:10.1016/0038-0717(93)90189-I. Retrieved18 July 2025.
  28. ^Pekkonen, Minna; Ketola, Tarmo; Laakso, Jouni T. (30 September 2013)."Resource availability and competition shape the evolution of survival and growth ability in a bacterial community".PLOS One.8 (9) e76471.Bibcode:2013PLoSO...876471P.doi:10.1371/journal.pone.0076471.PMC 3787024.PMID 24098791.
  29. ^Stephenson, Keith; Lewis, Richard J. (April 2005)."Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon".FEMS Microbiology Reviews.29 (2):281–301.doi:10.1016/j.fmrre.2004.10.003.PMID 15808745.
  30. ^Navarro Llorens, Juana María; Tormo, Antonio; Martínez-García, Esteban (July 2010)."Stationary phase in gram-negative bacteria".FEMS Microbiology Reviews.34 (4):476–95.doi:10.1111/j.1574-6976.2010.00213.x.PMID 20236330. Retrieved21 July 2025.
  31. ^Penadés, José R.; Chen, John; Quiles-Puchalt, Nuria; Carpena, Nuria; Novick, Richard P. (February 2015)."Bacteriophage-mediated spread of bacterial virulence genes".Current Opinion in Microbiology.23:171–8.doi:10.1016/j.mib.2014.11.019.PMID 25528295. Retrieved21 July 2025.
  32. ^Pires, Diana P.; Cleto, Sara; Sillankorva, Sanna; Azeredo, Joana; Lu, Timothy K. (1 June 2016)."Genetically engineered phages: a review of advances over the last decade".Microbiology and Molecular Biology Reviews.80 (3):523–43.doi:10.1128/mmbr.00069-15.hdl:1822/43301.PMC 4981678.PMID 27250768. Retrieved21 July 2025.
  33. ^Prosser, James Ivor (1990)."Autotrophic nitrification in bacteria".Advances in Microbial Physiology.30:125–81.doi:10.1016/S0065-2911(08)60112-5.ISBN 978-0-12-027730-8.PMID 2700538. Retrieved21 July 2025.
  34. ^Brierley, Euan D. R.; Wood, Martin (August 2001)."Heterotrophic nitrification in an acid forest soil: isolation and characterisation of a nitrifying bacterium".Soil Biology and Biochemistry.33 (10):1403–9.Bibcode:2001SBiBi..33.1403B.doi:10.1016/S0038-0717(01)00045-1. Retrieved21 July 2025.
  35. ^Franche, Claudine; Lindström, Kristina; Elmerich, Claudine (3 December 2008)."Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants".Plant and Soil.321 (1–2):35–59.doi:10.1007/s11104-008-9833-8. Retrieved21 July 2025.
  36. ^Schulz, Stefanie; Brankatschk, Robert; Dümig, Alexander; Kögel-Knabner, Ingrid; Schloter, Michael; Zeyer, Josef (18 June 2013)."The role of microorganisms at different stages of ecosystem development for soil formation".Biogeosciences.10 (6):3983–96.Bibcode:2013BGeo...10.3983S.doi:10.5194/bg-10-3983-2013.hdl:20.500.11850/70776.
  37. ^Groffman, Peter M. (8 November 2012)."Terrestrial denitrification: challenges and opportunities".Ecological Processes.1 (11) 11.Bibcode:2012EcoPr...1...11G.doi:10.1186/2192-1709-1-11.
  38. ^Mulvaney, Richard L.; Khan, Shahoor ad; Mulvaney, C. S. (February 1997)."Nitrogen fertilizers promote denitrification".Biology and Fertility of Soils.24 (2):211–20.Bibcode:1997BioFS..24..211M.doi:10.1007/s003740050233. Retrieved22 July 2025.
  39. ^Burkart, Michael R.; Stoner, Jeffrey D. (1 May 2002)."Nitrate in aquifers beneath agricultural systems".Water Science and Technology.45 (9):19–29.Bibcode:2002WSTec..45Q..19B.doi:10.2166/wst.2002.0195.PMID 12079102. Retrieved22 July 2025.
  40. ^Mason, J. Clark; Richards, Michelle; Zimmermann, Wolfgang; Broda, Paul (May 1988)."Identification of extracellular proteins from actinomycetes responsible for the solubilisation of lignocellulose".Applied Microbiology and Biotechnology.28 (3):276–80.doi:10.1007/BF00250455. Retrieved22 July 2025.
  41. ^Lacombe-Harvey, Marie-Ève; Brzezinski, Ryszard; Beaulieu, Carole (21 June 2018)."Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution".Applied Microbiology and Biotechnology.102 (17):7219–30.doi:10.1007/s00253-018-9149-4.PMC 6097792.PMID 29931600. Retrieved22 July 2025.
  42. ^Schöller, Charlotte E. G.; Gürtier, Hanne; Pedersen, Rita; Molin, Søren; Wilkins, Ken (27 March 2002)."Volatile metabolites from actinomycetes".Journal of Agricultural and Food Chemistry.50 (9):2615–21.Bibcode:2002JAFC...50.2615S.doi:10.1021/jf0116754.PMID 11958631. Retrieved22 July 2025.
  43. ^"Actinomycetes: remarkable antibiotic, nitrogen fixing, decomposer bacteria".www.the-compost-gardener.com. Retrieved22 July 2025.
  44. ^Bridge, Paul; Spooner, Brian (May 2001)."Soil fungi: diversity and detection".Plant and Soil.232 (1–2):147–54.Bibcode:2001PlSoi.232..147B.doi:10.1023/A:1010346305799. Retrieved22 July 2025.
  45. ^Guggenberger, Georg (2005)."Humification and mineralization in soils". In Varma, Ajit; Buscot, François (eds.).Microorganisms in soils: roles in genesis and functions. Soil Biology. Vol. 3. Berlin, Germany:Springer-Verlag. pp. 85–106.doi:10.1007/3-540-26609-7_4.ISBN 978-3-540-26609-9. Retrieved22 July 2025.
  46. ^Kjøller, Annelise H.; Struwe, Sten (2002)."Fungal communities, succession, enzymes, and decomposition". In Burns, Richard G.; Dick, Richard P. (eds.).Enzymes in the environment: activity, ecology, and applications. Boca Raton, Florida:CRC Press. pp. 267–84.ISBN 978-0-429-20757-0. Retrieved22 July 2025.
  47. ^Feofilova, E. P.; Ivashechkin, Aleksey A.; Alekhin, A. I.; Sergeeva, Yana E. (29 December 2011)."Fungal spores: dormancy, germination, chemical composition, and role in biotechnology (review)".Applied Biochemistry and Microbiology.48 (1):1–11.doi:10.1134/S0003683812010048. Retrieved22 July 2025.
  48. ^McCartney, Alastair; West, Jon (26 June 2007)."Dispersal of fungal spores through the air". In Dijksterhuis, Jan; Samson, Robert A. (eds.).Food mycology: a multifaceted approach to fungi and food. Boca Raton, Florida:CRC Press. pp. 65–81.ISBN 978-0-429-18901-2. Retrieved23 July 2025.
  49. ^Golan, Jacob J.; Pringle, Anne (14 July 2017)."Long-distance dispersal of fungi".Microbiology Spectrum.5 (4) 5.4.03:1–24.doi:10.1128/microbiolspec.funk-0047-2016.PMC 11687522.PMID 28710849. Retrieved23 July 2025.
  50. ^Dromph, Karsten M. (2001)."Dispersal of entomopathogenic fungi by collembolans".Soil Biology and Biochemistry.33 (15):2047–51.Bibcode:2001SBiBi..33.2047D.doi:10.1016/S0038-0717(01)00130-4. Retrieved23 July 2025.
  51. ^Piattoni, Federica; Oir, Francesca; Morara, Marco; Iotti, Mirco; Zambonelli, Alessandra (2012)."The role of wild boars in spore dispersal of hypogeous fungi".Acta Mycologica.47 (2):145–53.doi:10.5586/am.2012.017.
  52. ^Sato, Hirotoshi; Tsujino, Riyou; Kurita, Kazuki; Yokoyama, Kazumasa; Agata, Kiyokazu (November 2012)."Modelling the global distribution of fungal species: new insights into microbial cosmopolitanism".Molecular Ecology.21 (22):5599–612.Bibcode:2012MolEc..21.5599S.doi:10.1111/mec.12053.PMID 23062148. Retrieved23 July 2025.
  53. ^Hampp, Rüdiger; Schaeffer, Christoph (1999)."Mycorrhiza: carbohydrate and energy metabolism". In Varma, Ajit; Hock, Bertold (eds.).Mycorrhiza: structure, function, molecular biology and biotechnology (second ed.). Berlin, Germany:Springer. pp. 273–303.doi:10.1007/978-3-662-03779-9_12.ISBN 978-3-662-03779-9. Retrieved24 July 2025.
  54. ^Govindarajulu, Manjula; Pfeffer, Philip E.; Jin, Hairu; Abubaker, Jehad; Douds, David D.; Allen, James W.; Bücking, Heike; Lammers, Peter J.; Shachar-Hill, Yair (9 June 2005)."Nitrogen transfer in the arbuscular mycorrhizal symbiosis".Nature.435 (7043):819–23.Bibcode:2005Natur.435..819G.doi:10.1038/nature03610.PMID 15944705. Retrieved24 July 2025.
  55. ^Plassard, Claude; Becquer, Adeline; Garcia, Kevin (September 2019)."Phosphorus transport in mycorrhiza: how far are we?".Trends in Plant Science.24 (9):794–801.Bibcode:2019TPS....24..794P.doi:10.1016/j.tplants.2019.06.004.PMID 31272899. Retrieved24 July 2025.
  56. ^Plamboeck, Agneta H.; Dawson, Todd E.; Egerton-Warburton, Louise M.; North, Malcolm; Bruns, Thomas D.; Querejeta, José Ignacio (1 March 2007)."Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings".Mycorrhiza.17 (5):439–47.Bibcode:2007Mycor..17..439P.doi:10.1007/s00572-007-0119-4.PMID 17333298. Retrieved24 July 2025.
  57. ^Gutjahr, Caroline; Parniske, Martin (5 June 2017)."Control of partner lifetime in a plant-fungus relationship".Current Biology.27 (11):R420 –R423.doi:10.1016/j.cub.2017.04.020.PMID 28586667.
  58. ^Wu, Songlin; Fu, Wei; Rillig, Matthias C.; Chen, Baodong; Zhu, Yong-Guan; Huang, Longbin (May 2024)."Soil organic matter dynamics mediated by arbuscular mycorrhizal fungi: an updated conceptual framework".New Phytologist.242 (4):1417–25.Bibcode:2007Mycor..17..439P.doi:10.1007/s00572-007-0119-4.PMID 17333298.
  59. ^Wang, Wanxiao; Shi, Jincai; Xie, Qiujin; Jiang, Yina; Yu, Nan; Wang, Ertao (12 September 2017)."Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis".Molecular Plant.10 (9):1147–58.Bibcode:2017MPlan..10.1147W.doi:10.1016/j.molp.2017.07.012.PMID 28782719.
  60. ^Querejeta, José; Egerton-Warburton, Louise M.; Allen, Michael F. (January 2003)."Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying".Oecologia.134 (1):55–64.Bibcode:2003Oecol.134...55Q.doi:10.1007/s00442-002-1078-2.PMID 12647179. Retrieved25 July 2025.
  61. ^Fitter, Alastair H.; Graves, J. D.; Watkins, N. K.; Robinson, David; Scrimgeour, Charlie (June 1998)."Carbon transfer between plants and its control in networks of arbuscular mycorrhizas".Functional Ecology.12 (3):406–12.Bibcode:1998FuEco..12..406F.doi:10.1046/j.1365-2435.1998.00206.x.
  62. ^He, Xin-Hua; Critchley, Christa; Bledsoe, Caroline (18 June 2010)."Nitrogen transfer within and between plants through Common Mycorrhizal Networks (CMNs)".Critical Reviews in Plant Sciences.22 (6):531–67.doi:10.1080/713608315. Retrieved25 July 2025.
  63. ^Egerton-Warburton, Louise M.; Querejeta, José Ignacio; Allen, Michael F. (April 2007)."Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants".Journal of Experimental Botany.58 (6):1473–83.doi:10.1093/jxb/erm009.PMID 17350936. Retrieved25 July 2025.
  64. ^Barto, E. Kathryn; Weidenhamer, Jeffrey D.; Cipollini, Don; Rillig, Matthias C. (November 2012)."Fungal superhighways: do common mycorrhizal networks enhance below ground communication?".Trends in Plant Science.17 (11):633–7.Bibcode:2012TPS....17..633B.doi:10.1016/j.tplants.2012.06.007.PMID 22818769. Retrieved25 July 2025.
  65. ^Rillig, Matthias C.; Lehmann, Anika; Lanfranco, Luisa; Caruso, Tancredi; Johnson, David (June 2025)."Clarifying the definition of common mycorrhizal networks".Functional Ecology.39 (6):1411–7.Bibcode:2025FuEco..39.1411R.doi:10.1111/1365-2435.14545.
  66. ^Newman, Edward I.; Reddell, Paul (August 1987)."The distribution of mycorrhizas among families of vascular plants".New Phytologist.106 (4):745–51.Bibcode:1987NewPh.106..745N.doi:10.1111/j.1469-8137.1987.tb00175.x.PMID 33874079.
  67. ^Selosse, Marc-André; Richard, Franck; He, Xinhua; Simard, Suzanne W. (November 2006)."Mycorrhizal networks:des liaisons dangereuses?".Trends in Ecology and Evolution.21 (11):621–8.Bibcode:2006TEcoE..21..621S.doi:10.1016/j.tree.2006.07.003.PMID 16843567. Retrieved25 July 2025.
  68. ^Nicotra, Adrienne B.; Chazdon, Robin L.; Iriarte, Silvia V. B. (September 1999)."Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests".Ecology.80 (6): 1908–26.doi:10.1890/0012-9658(1999)080[1908:SHOLAW]2.0.CO;2. Retrieved25 July 2025.
  69. ^Högberg, Peter; Högberg, Mona N. (15 July 2022)."Does successful forest regeneration require the nursing of seedlings by nurse trees through mycorrhizal interconnections?"(PDF).Forest Ecology and Management.516 (2) 120252.Bibcode:2022ForEM.51620252H.doi:10.1016/j.foreco.2022.120252. Retrieved25 July 2025.
  70. ^Attenborough, David (1995)."The private life of plants, a BBC nature documentary series written and presented by David Attenborough". Retrieved28 July 2025.
  71. ^George, Nirmal Philip; Ray, Joseph George (24 February 2023)."The inevitability of arbuscular mycorrhiza for sustainability in organic agriculture: a critical review".Frontiers in Sustainable Food Systems.7 1124688.Bibcode:2023FrSFS...724688G.doi:10.3389/fsufs.2023.1124688.
  72. ^Comis, Don (September 2002)."Glomalin: hiding place for a third of the world's stored soil carbon"(PDF).Agricultural Research.50 (9):4–7. Retrieved28 July 2025.
  73. ^Frouz, Jan (15 December 2018)."Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization".Geoderma.332:161–172.Bibcode:2018Geode.332..161F.doi:10.1016/j.geoderma.2017.08.039.ISSN 0016-7061.S2CID 135319222. Retrieved28 July 2025.
  74. ^Franco, André L. C.; Cherubin, Mauricio R.; Cerri, Carlos E. P.; Six, Johan; Wall, Diana H.; Cerri, Carlos C. (November 2020)."Linking soil engineers, structural stability, and organic matter allocation to unravel soil carbon responses to land-use change".Soil Biology and Biochemistry.150 107998.Bibcode:2020SBiBi.15007998F.doi:10.1016/j.soilbio.2020.107998. Retrieved28 July 2025.
  75. ^Bhadauria, Tunira; Saxena, Krishan Gopal (14 December 2009)."Role of earthworms in soil fertility maintenance through the production of biogenic structures".Applied and Environmental Soil Science.2010: ID 816073.doi:10.1155/2010/816073.
  76. ^Bouché, Marcel B.; Al-Addan, Fathel (March–April 1997)."Earthworms, water infiltration and soil stability: some new assessments".Soil Biology and Biochemistry.29 (3–4):441–452.Bibcode:1997SBiBi..29..441B.doi:10.1016/S0038-0717(96)00272-6. Retrieved28 July 2025.
  77. ^Gong, Xing; Wang, Shuai; Wang, Zhenwei; Jiang, Yuji; Hu, Zhengkun; Zheng, Yong; Chen, Xiaoyun; Li, Huixin; Hu, Feng; Liu, Manqiang; Scheu, Stefan (1 August 2019)."Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering pH".Geoderma.347:59–69.Bibcode:2019Geode.347...59G.doi:10.1016/j.geoderma.2019.03.043. Retrieved28 July 2025.
  78. ^Dempsey, Mark A.; Fisk, Melany C.; Fahey, Timothy J. (October 2011)."Earthworms increase the ratio of bacteria to fungi in northern hardwood forest soils, primarily by eliminating the organic horizon".Soil Biology and Biochemistry.43 (10):2135–41.Bibcode:2011SBiBi..43.2135D.doi:10.1016/j.soilbio.2011.06.017. Retrieved28 July 2025.
  79. ^de Souza, Henrique Jesus; Delabie, Jacques Hubert Charles (2019)."Ecosystem engineers, ants and termites". In Starr, Christopher K. (ed.).Encyclopedia of social insects. Berlin, Germany:Springer.doi:10.1007/978-3-319-90306-4_186-2.ISBN 978-3-319-90306-4. Retrieved29 July 2025.
  80. ^Evans, Theodore A.; Dawes, Tracy Z.; Ward, Philip R.; Lo, Nathan (29 March 2011)."Ants and termites increase crop yield in a dry climate".Nature Communications.2 262.Bibcode:2011NatCo...2..262E.doi:10.1038/ncomms1257.PMC 3072065.PMID 21448161.
  81. ^Muon, Ratha; Ket, Pinnara; Sebag, David; Boukbida, Hanane Aroui; Podwojewski, Pascal; Hervé, Vincent; Ann, Vannak; Jouquet, Pascal (June 2023)."Termite constructions as patches of soil fertility in Cambodian paddy fields"(PDF).Geoderma Regional.33 e00640.Bibcode:2023GeodR..3300640M.doi:10.1016/j.geodrs.2023.e00640. Retrieved29 July 2025.
  82. ^Eldridge, David J.; Pickard, John (1994)."Effects of ants on sandy soils in semi-arid eastern Australia. II. Relocation of nest entrances and consequences for bioturbation".Soil Research.32 (2):323–33.Bibcode:1994SoilR..32..323E.doi:10.1071/SR9940323. Retrieved29 July 2025.
  83. ^Kinlaw, Al (February 1999)."A review of burrowing by semi-fossorial vertebrates in arid environments".Journal of Arid Environments.41 (2):127–45.Bibcode:1999JArEn..41..127K.doi:10.1006/jare.1998.0476. Retrieved29 July 2025.
  84. ^Platt, Brian F.; Kolb, Dakota J.; Kunhardt, Christian G.; Milo, Scott P.; New, Lee G. (March–April 2016)."Burrowing through the literature: the impact of soil-disturbing vertebrates on physical and chemical properties of soil".Soil Science.181 (3–4):175–91.doi:10.1097/SS.0000000000000150. Retrieved29 July 2025.

Bibliography

[edit]
  • Alexander, 1977, Introduction to Soil Microbiology, 2nd edition, John Wiley
  • Alexander, 1994, Biodegradation and Bioremediation, Academic Press
  • Bardgett, R.D., 2005, The Biology of Soil: A Community and Ecosystem Approach, Oxford University Press
  • Burges, A., and Raw, F., 1967, Soil Biology: Academic Press
  • Coleman D.C. et al., 2004, Fundamentals of Soil Ecology, 2nd edition, Academic Press
  • Coyne, 1999, Soil Microbiology: An Exploratory Approach, Delmar
  • Doran, J.W., D.C. Coleman, D.F. Bezdicek and B.A. Stewart. 1994. Definingsoil quality for a sustainable environment. Soil Science Society of America Special Publication Number 35, ASA, Madison Wis.
  • Paul, P.A. and F.E. Clark. 1996, Soil Microbiology and Biochemistry, 2nd edition, Academic Press
  • Richards, 1987, The Microbiology of Terrestrial Ecosystems, Longman Scientific & Technical
  • Sylvia et al., 1998, Principles and Applications of Soil Microbiology, Prentice Hall
  • Soil and Water Conservation Society, 2000, Soil Biology Primer.
  • Tate, 2000, Soil Microbiology, 2nd edition, John Wiley
  • van Elsas et al., 1997, Modern Soil Microbiology, Marcel Dekker
  • Wood, 1995, Environmental Soil Biology, 2nd edition, Blackie A & P
  • Vats, Rajeev & Sanjeev, Aggarwal. (2019). Impact of termite activity and its effect on soil composition.

External links

[edit]
Main fields
Soil topics
Applications
Related fields
Societies, Initiatives
Scientific journals
See also
Soil type
World Reference Base for Soil Resources (1998–)
USDA soil
taxonomy
Other systems
Non-systematic soil types
Soil on bodies other than Earth
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Soil_biology&oldid=1321432529#Table_of_soil_life"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp