Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Soft configuration model

From Wikipedia, the free encyclopedia
Random graph model in applied mathematics
Part ofa series on
Network science
Network types
Graphs
Features
Types
Models
Topology
Dynamics
  • Lists
  • Categories

In applied mathematics, thesoft configuration model (SCM) is arandom graph model subject to theprinciple of maximum entropy under constraints on theexpectation of thedegree sequence of sampledgraphs.[1] Whereas theconfiguration model (CM) uniformly samples random graphs of a specific degree sequence, the SCM only retains the specified degree sequence on average over all network realizations; in this sense the SCM has very relaxed constraints relative to those of the CM ("soft" rather than "sharp" constraints[2]). The SCM for graphs of sizen{\displaystyle n} has a nonzero probability of sampling any graph of sizen{\displaystyle n}, whereas the CM is restricted to only graphs having precisely the prescribed connectivity structure.

Model formulation

[edit]

The SCM is astatistical ensemble of random graphsG{\displaystyle G} havingn{\displaystyle n} vertices (n=|V(G)|{\displaystyle n=|V(G)|}) labeled{vj}j=1n=V(G){\displaystyle \{v_{j}\}_{j=1}^{n}=V(G)}, producing aprobability distribution onGn{\displaystyle {\mathcal {G}}_{n}} (the set of graphs of sizen{\displaystyle n}). Imposed on the ensemble aren{\displaystyle n} constraints, namely that theensemble average of thedegreekj{\displaystyle k_{j}} of vertexvj{\displaystyle v_{j}} is equal to a designated valuek^j{\displaystyle {\widehat {k}}_{j}}, for allvjV(G){\displaystyle v_{j}\in V(G)}. The model is fullyparameterized by its sizen{\displaystyle n} and expected degree sequence{k^j}j=1n{\displaystyle \{{\widehat {k}}_{j}\}_{j=1}^{n}}. These constraints are both local (one constraint associated with each vertex) and soft (constraints on the ensemble average of certain observable quantities), and thus yields acanonical ensemble with anextensive number of constraints.[2] The conditionskj=k^j{\displaystyle \langle k_{j}\rangle ={\widehat {k}}_{j}} are imposed on the ensemble by themethod of Lagrange multipliers (seeMaximum-entropy random graph model).

Derivation of the probability distribution

[edit]

The probabilityPSCM(G){\displaystyle \mathbb {P} _{\text{SCM}}(G)} of the SCM producing a graphG{\displaystyle G} is determined by maximizing theGibbs entropyS[G]{\displaystyle S[G]} subject to constraintskj=k^j, j=1,,n{\displaystyle \langle k_{j}\rangle ={\widehat {k}}_{j},\ j=1,\ldots ,n} and normalizationGGnPSCM(G)=1{\displaystyle \sum _{G\in {\mathcal {G}}_{n}}\mathbb {P} _{\text{SCM}}(G)=1}. This amounts tooptimizing the multi-constraintLagrange function below:

L(α,{ψj}j=1n)=GGnPSCM(G)logPSCM(G)+α(1GGnPSCM(G))+j=1nψj(k^jGGnPSCM(G)kj(G)),{\displaystyle {\begin{aligned}&{\mathcal {L}}\left(\alpha ,\{\psi _{j}\}_{j=1}^{n}\right)\\[6pt]={}&-\sum _{G\in {\mathcal {G}}_{n}}\mathbb {P} _{\text{SCM}}(G)\log \mathbb {P} _{\text{SCM}}(G)+\alpha \left(1-\sum _{G\in {\mathcal {G}}_{n}}\mathbb {P} _{\text{SCM}}(G)\right)+\sum _{j=1}^{n}\psi _{j}\left({\widehat {k}}_{j}-\sum _{G\in {\mathcal {G}}_{n}}\mathbb {P} _{\text{SCM}}(G)k_{j}(G)\right),\end{aligned}}}

whereα{\displaystyle \alpha } and{ψj}j=1n{\displaystyle \{\psi _{j}\}_{j=1}^{n}} are then+1{\displaystyle n+1} multipliers to be fixed by then+1{\displaystyle n+1} constraints (normalization and the expected degree sequence). Setting to zero the derivative of the above with respect toPSCM(G){\displaystyle \mathbb {P} _{\text{SCM}}(G)} for an arbitraryGGn{\displaystyle G\in {\mathcal {G}}_{n}} yields

0=L(α,{ψj}j=1n)PSCM(G)=logPSCM(G)1αj=1nψjkj(G)  PSCM(G)=1Zexp[j=1nψjkj(G)],{\displaystyle 0={\frac {\partial {\mathcal {L}}\left(\alpha ,\{\psi _{j}\}_{j=1}^{n}\right)}{\partial \mathbb {P} _{\text{SCM}}(G)}}=-\log \mathbb {P} _{\text{SCM}}(G)-1-\alpha -\sum _{j=1}^{n}\psi _{j}k_{j}(G)\ \Rightarrow \ \mathbb {P} _{\text{SCM}}(G)={\frac {1}{Z}}\exp \left[-\sum _{j=1}^{n}\psi _{j}k_{j}(G)\right],}

the constantZ:=eα+1=GGnexp[j=1nψjkj(G)]=1i<jn(1+e(ψi+ψj)){\displaystyle Z:=e^{\alpha +1}=\sum _{G\in {\mathcal {G}}_{n}}\exp \left[-\sum _{j=1}^{n}\psi _{j}k_{j}(G)\right]=\prod _{1\leq i<j\leq n}\left(1+e^{-(\psi _{i}+\psi _{j})}\right)}[3] being thepartition function normalizing the distribution; the above exponential expression applies to allGGn{\displaystyle G\in {\mathcal {G}}_{n}}, and thus is the probability distribution. Hence we have anexponential family parameterized by{ψj}j=1n{\displaystyle \{\psi _{j}\}_{j=1}^{n}}, which are related to the expected degree sequence{k^j}j=1n{\displaystyle \{{\widehat {k}}_{j}\}_{j=1}^{n}} by the following equivalent expressions:

kq=GGnkq(G)PSCM(G)=logZψq=jq1eψq+ψj+1=k^q, q=1,,n.{\displaystyle \langle k_{q}\rangle =\sum _{G\in {\mathcal {G}}_{n}}k_{q}(G)\mathbb {P} _{\text{SCM}}(G)=-{\frac {\partial \log Z}{\partial \psi _{q}}}=\sum _{j\neq q}{\frac {1}{e^{\psi _{q}+\psi _{j}}+1}}={\widehat {k}}_{q},\ q=1,\ldots ,n.}

References

[edit]
  1. ^van der Hoorn, Pim; Gabor Lippner; Dmitri Krioukov (2017-10-10). "Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution".arXiv:1705.10261.
  2. ^abGarlaschelli, Diego; Frank den Hollander; Andrea Roccaverde (January 30, 2018)."Coviariance structure behind breaking of ensemble equivalence in random graphs"(PDF).Archived(PDF) from the original on February 4, 2023. RetrievedSeptember 14, 2018.
  3. ^Park, Juyong; M.E.J. Newman (2004-05-25). "The statistical mechanics of networks".arXiv:cond-mat/0405566.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Soft_configuration_model&oldid=1195898888"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp