Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Sodium borohydride

From Wikipedia, the free encyclopedia
Chemical compound
Sodium borohydride
Wireframe model of sodium borohydride
Wireframe model of sodium borohydride
Names
IUPAC name
Sodium tetrahydridoborate(1–)
Systematic IUPAC name
Sodium boranuide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.037.262Edit this at Wikidata
EC Number
  • 241-004-4
23167
MeSHSodium+borohydride
RTECS number
  • ED3325000
UNII
UN number1426
  • InChI=1S/BH4.Na/h1H4;/q-1;+1 checkY
    Key: YOQDYZUWIQVZSF-UHFFFAOYSA-N checkY
  • InChI=1S/BH4.Na/h1H4;/q-1;+1
  • Key: YOQDYZUWIQVZSF-UHFFF
  • [Na+].[BH4-]
Properties
Na[BH4]
Molar mass37.83 g·mol−1
Appearancewhite crystals
hygroscopic
Density1.07 g/cm3[1]
Melting point400 °C (752 °F; 673 K)(decomposes)[1]
550 g/L[1]
Solubilitysoluble in liquidammonia,amines,pyridine
Structure[2]
Cubic (NaCl),cF8
Fm3m, No. 225
a = 0.6157 nm
Thermochemistry[3]
86.8 J·mol−1·K−1
101.3 J·mol−1·K−1
−188.6 kJ·mol−1
−123.9 kJ·mol−1
Hazards
GHS labelling:[4]
GHS02: FlammableGHS06: ToxicGHS08: Health hazardGHS05: Corrosive
Danger
H260,H301,H314,H360F
P201,P231+P232,P280,P308+P313,P370+P378,P402+P404
NFPA 704 (fire diamond)
Flash point70 °C (158 °F; 343 K)
ca. 220 °C (428 °F; 493 K)
Explosive limits3%
Lethal dose or concentration (LD, LC):
160 mg/kg (Oral – Rat)
230 mg/kg (Dermal – Rabbit)
Related compounds
Otheranions
Sodium cyanoborohydride
Sodium hydride
Sodium borate
Borax
Sodium aluminum hydride
Othercations
Lithium borohydride
Potassium borohydride
Related compounds
Lithium aluminium hydride
Sodium triacetoxyborohydride
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Sodium borohydride, also known assodium tetrahydridoborate andsodium tetrahydroborate,[5] is aninorganic compound with theformulaNaBH4 (sometimes written asNa[BH4]). It is a whitecrystalline solid, usually encountered as an aqueousbasic solution. Sodium borohydride is areducing agent that finds application inpapermaking and dye industries. It is also used as a reagent in organic synthesis.[6]

The compound was discovered in the 1940s byH. I. Schlesinger, who led a team seeking volatile uranium compounds.[7][8] Results of this wartime research were declassified and published in 1953.

Properties

[edit]

The compound is soluble inalcohols, certainethers, and water, although it slowly hydrolyzes.[9]

SolventSolubility (g/(100 mL))[9]
CH3OH13
CH3CH2OH3.16
Diglyme5.15
(CH3CH2)2Oinsoluble

Sodium borohydride is an odorless white to gray-whitemicrocrystalline powder that often forms lumps. It can be purified by recrystallization from warm (50 °C)diglyme.[10] Sodium borohydride is soluble inprotic solvents such as water and lower alcohols. It also reacts with theseprotic solvents to produceH2; however, these reactions are fairly slow. Complete decomposition of a methanol solution requires nearly 90 min at 20 °C.[11] It decomposes in neutral or acidic aqueous solutions, but is stable at pH 14.[9]

Structure

[edit]

NaBH4 is a salt, consisting of the tetrahedral[BH4] anion. The solid is known to exist as threepolymorphs:α,β andγ. The stable phase at room temperature and pressure isα-NaBH4, which is cubic and adopts anNaCl-type structure, in theFm3mspace group. At a pressure of 6.3 GPa, the structure changes to the tetragonalβ-NaBH4 (space groupP421c) and at 8.9 GPa, the orthorhombicγ-NaBH4 (space groupPnma) becomes the most stable.[12][13][14]

  • α-NaBH4
    α-NaBH4
  • β-NaBH4
    β-NaBH4
  • γ-NaBH4
    γ-NaBH4

Synthesis and handling

[edit]

For commercialNaBH4 production, the Brown-Schlesinger process and the Bayer process are the most popular methods. In the Brown-Schlesinger process, sodium borohydride is industrially prepared fromsodium hydride (produced by reacting Na andH2) andtrimethyl borate at 250–270 °C:

B(OCH3)3 + 4 NaH → NaBH4 + 3 NaOCH3

Millions of kilograms are produced annually, far exceeding the production levels of any other hydride reducing agent.[15] In the Bayer process, it is produced from inorganic borates, includingborosilicate glass[16] andborax (Na2B4O7):

Na2B4O7 + 16 Na + 8 H2 + 7 SiO2 → 4 NaBH4 + 7 Na2SiO3

Magnesium is a less expensive reductant, and could in principle be used instead:[17][18]

8 MgH2 + Na2B4O7 + Na2CO3 → 4 NaBH4 + 8 MgO + CO2

and

2 MgH2 + NaBO2 → NaBH4 + 2 MgO

Reactivity

[edit]

Organic synthesis

[edit]

NaBH4reduces many organic carbonyls, depending on the conditions. Most typically, it is used in the laboratory for converting ketones and aldehydes to alcohols.[6] These reductions proceed in two stages, formation of the alkoxide followed by hydrolysis:

NaBH4 + 4 R2C=O → NaO−CHR2 + B(O−CHR2)3
NaO−CHR2 + B(O−CHR2)3 + 4 H2O → 4 HO−CHR2 + NaOH + B(OH)3

It also efficiently reducesacyl chlorides,anhydrides, α-hydroxylactones,thioesters, andimines at room temperature or below. It reduces esters slowly and inefficiently with excess reagent and/or elevated temperatures, while carboxylic acids and amides are not reduced at all.[19]

Nevertheless, an alcohol, often methanol or ethanol, is generally the solvent of choice for sodium borohydride reductions of ketones and aldehydes. The mechanism of ketone and aldehyde reduction has been scrutinized by kinetic studies, and contrary to popular depictions in textbooks, the mechanism does not involve a 4-membered transition state like alkene hydroboration,[20] or a six-membered transition state involving a molecule of the alcohol solvent.[21] Hydrogen-bonding activation is required, as no reduction occurs in an aprotic solvent likediglyme. However, the rate order in alcohol is 1.5, while carbonyl compound and borohydride are both first order, suggesting a mechanism more complex than one involving a six-membered transition state that includes only a single alcohol molecule. It was suggested that the simultaneous activation of the carbonyl compound and borohydride occurs, via interaction with the alcohol and alkoxide ion, respectively, and that the reaction proceeds through an open transition state.[22][23]

α,β-Unsaturated ketones tend to be reduced byNaBH4 in a 1,4-sense, although mixtures are often formed. Addition of cerium chloride improves theselectivity for 1,2-reduction of unsaturated ketones (Luche reduction). α,β-Unsaturated esters also undergo 1,4-reduction in the presence ofNaBH4.[9]

TheNaBH4-MeOH system, formed by the addition ofmethanol to sodium borohydride in refluxing THF, reduces esters to the corresponding alcohols.[24] Mixing water or an alcohol with the borohydride converts some of it into unstable hydride ester, which is more efficient at reduction, but the reductant eventually decomposes spontaneously to produce hydrogen gas and borates. The same reaction can also occur intramolecularly: an α-ketoester converts into a diol, since the alcohol produced attacks the borohydride to produce an ester of the borohydride, which then reduces the neighboring ester.[25]

The reactivity ofNaBH4 can be enhanced or augmented by a variety of compounds.[26][27]

Many additives for modifying the reactivity of sodium borohydride have been developed as indicated by the following incomplete listing.

Additives for sodium borohydride
additivesynthetic applicationspage in Smith and March[28]comment
AlCl3reduction of ketones to methylene1837
BiCl3converts epoxides to allylic alcohols1316
(C6H5Te)2reduction of nitroarenes1862
CeCl3reduction of ketones in the presence of aldehydes1794Luche reduction
CoCl2reduction of azides to amines1822
InCl3hydrogenolysis of alkyl bromides, double reduction of unsaturated ketones1825, 1793
LiClamine oxides to amines1846lithium borohydride
NiCl2deoxygenation of sulfoxides, hydrogenolysis of aryl tosylates, desulfurization, reduction of nitriles1851,1831, 991, 1814nickel boride
TiCl4denitrosatation ofnitrosamines1823
ZnCl2reduction of aldehydes1793
ZrCl4reduction of disulfides, reduction of azides to amines, cleavage of allyl aryl ethers1853, 1822, 582

Oxidation

[edit]

Oxidation withiodine intetrahydrofuran givesborane–tetrahydrofuran, which can reduce carboxylic acids to alcohols.[29]

Partial oxidation ofborohydride with iodine givesoctahydrotriborate:[30]

3 [BH4] + I2 → [B3H8] + 2 H2 + 2 I

Coordination chemistry

[edit]

[BH4] is aligand for metal ions. Such borohydride complexes are often prepared by the action ofNaBH4 (or theLiBH4) on the corresponding metal halide. One example is thetitanocene derivative:[31]

2 (C5H5)2TiCl2 + 4 NaBH4 → 2 (C5H5)2TiBH4 + 4 NaCl + B2H6 + H2

Protonolysis and hydrolysis

[edit]

NaBH4 reacts with water and alcohols, with evolution of hydrogen gas and formation of the corresponding borate, the reaction being especially fast at low pH. Exploiting this reactivity, sodium borohydride has been studied as a prototypes of thedirect borohydride fuel cell.

NaBH4 + 2 H2O → NaBO2 + 4 H2 (ΔH < 0)

Applications

[edit]

Paper manufacture

[edit]

The dominant application of sodium borohydride is the production ofsodium dithionite from sulfur dioxide: Sodium dithionite is used as a bleaching agent for wood pulp and in the dyeing industry.

It has been tested as pretreatment for pulping of wood, but is too costly to be commercialized.[15][32]

Chemical synthesis

[edit]

Sodium borohydridereducesaldehydes andketones to give the relatedalcohols. This reaction is used in the production of various antibiotics includingchloramphenicol,dihydrostreptomycin, andthiophenicol. Various steroids andvitamin A are prepared using sodium borohydride in at least one step.[15]

Niche or abandoned applications

[edit]

Sodium borohydride has been considered as a way tostore hydrogen forhydrogen-fueled vehicles, as it is safer (being stable in dry air) and more efficient on a weight basis than most other alternatives.[33][34] The hydrogen can be released by simple hydrolysis of the borohydride. However, such a usage would need a cheap, relatively simple, and energy-efficient process to recycle the hydrolysis product,sodium metaborate, back to the borohydride. No such process was available as of 2007.[35]

Although practical temperatures and pressures for hydrogen storage have not been achieved, in 2012 a core–shellnanostructure of sodium borohydride was used to store, release and reabsorb hydrogen under moderate conditions.[36]

Skilled professional conservator/restorers have used sodium borohydride to minimize or reversefoxing in old books and documents.[37]

Education

[edit]

A common laboratory demonstration "uncooks" eggs with sodium borohydride, as hydride reagents reduce disulfides tothiols.[38] To uncook an egg, breaking the hydrogen and hydrophobic bonds is not enough.[39] As sodium borohydride is toxic, the egg white uncooked after three hours is not edible,[39] but Vitamin C can be used instead.[40][39]

See also

[edit]

Many derivatives and analogues of sodium borohydride exhibit modified reactivity of value in organic synthesis.[41]

  • Sodium triacetoxyborohydride, a milder reductant owing to the presence of more electron-withdrawing acetate in place of hydride.
  • Sodium triethylborohydride, a stronger reductant owing to the presence of electron-donating ethyl groups in place of hydride.
  • sodium cyanoborohydride, a milder reductant owing to the presence of more electron-withdrawing cyanide in place of hydride. Useful for reductive aminations.

References

[edit]
  1. ^abcHaynes, William M., ed. (2011).CRC Handbook of Chemistry and Physics (92nd ed.).CRC Press. p. 4.89.ISBN 978-1-4398-5511-9.
  2. ^Ford, P. T. and Powell, H. M. (1954)."The unit cell of potassium borohydride, KBH4, at 90° K".Acta Crystallogr.7 (8):604–605.Bibcode:1954AcCry...7..604F.doi:10.1107/S0365110X54002034.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. William M. Haynes, David R. Lide, Thomas J. Bruno (2016-2017, 97th ed.). Boca Raton, Florida. 2016.ISBN 978-1-4987-5428-6.OCLC 930681942.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  4. ^Record ofSodium borohydride in theGESTIS Substance Database of theInstitute for Occupational Safety and Health, accessed on 2023-11-09.
  5. ^Busch, D.H. (2009).Inorganic Syntheses. Vol. 20. Wiley. p. 137.ISBN 978-0-470-13286-9. Retrieved20 May 2015.
  6. ^abBanfi, Luca; Narisano, Enrica; Riva, Renata; Stiasni, Nikola; Hiersemann, Martin; Yamada, Tohru; Tsubo, Tatsuyuki (2014). "Sodium Borohydride".Encyclopedia of Reagents for Organic Synthesis. pp. 1–13.doi:10.1002/047084289X.rs052.pub3.ISBN 978-0-470-84289-8.
  7. ^Schlesinger, H. I.;Brown, H. C.; Abraham, B.; Bond, A. C.; Davidson, N.; Finholt, A. E.; Gilbreath, J. R.; Hoekstra, H.; Horvitz, L.; Hyde, E. K.; Katz, J. J.; Knight, J.; Lad, R. A.; Mayfield, D. L.; Rapp, L.; Ritter, D. M.; Schwartz, A. M.; Sheft, I.; Tuck, L. D.; Walker, A. O. (1953). "New developments in the chemistry of diborane and the borohydrides. General summary".J. Am. Chem. Soc.75:186–90.doi:10.1021/ja01097a049.
  8. ^Hermann I Schlesinger and Herbert C Brown (1945) "Preparation of alkali metal compounds". US Patent 2461661. Granted on 1949-02-15; expired on 1966-02-15.
  9. ^abcdBanfi, L.; Narisano, E.; Riva, R.; Stiasni, N.; Hiersemann, M. (2004). "Sodium Borohydride".Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons.doi:10.1002/047084289X.rs052.ISBN 978-0-471-93623-7.
  10. ^Brown, H. C. "Organic Syntheses via Boranes" John Wiley & Sons, Inc. New York: 1975.ISBN 0-471-11280-1. page 260-261
  11. ^Lo, Chih-ting F.; Karan, Kunal; Davis, Boyd R. (2007). "Kinetic Studies of Reaction between Sodium Borohydride and Methanol, Water, and Their Mixtures".Industrial & Engineering Chemistry Research.46 (17):5478–5484.doi:10.1021/ie0608861.
  12. ^Kumar, Ravhi S.; Cornelius, Andrew L. (2005). "Structural transitions in NaBH[sub 4] under pressure".Appl. Phys. Lett.87 (26): 261916.doi:10.1063/1.2158505.
  13. ^Filinchuk, Y.; Talyzin, A. V.; Chernyshov, D.; Dmitriev, V. (2007). "High-pressure phase of NaBH4: Crystal structure from synchrotron powder diffraction data".Phys. Rev. B.76 (9) 092104.Bibcode:2007PhRvB..76i2104F.doi:10.1103/PhysRevB.76.092104.S2CID 122588719.
  14. ^Kim, E.; Kumar, R.; Weck, P. F.; Cornelius, A. L.; Nicol, M.; Vogel, S. C.; Zhang, J.; Hartl, M.; Stowe, A. C.; Daemen, L.; Zhao, Y. (2007). "Pressure-driven phase transitions in NaBH4: theory and experiments".J. Phys. Chem. B.111 (50):13873–13876.doi:10.1021/jp709840w.PMID 18031032.
  15. ^abcWietelmann, Ulrich; Felderhoff, Michael; Rittmeyer, Peter (2002). "Hydrides".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.doi:10.1002/14356007.a13_199.pub2.ISBN 978-3-527-30673-2.OCLC 751968805.
  16. ^Schubert, F.; Lang, K.; Burger, A. (1960) "Alkali metal borohydrides" (Bayer). German patent DE 1088930 19600915 (ChemAbs: 55:120851). Supplement to. to Ger. 1,067,005 (CA 55, 11778i). From the abstract: "Alkali metal borosilicates are treated with alkali metal hydrides in approx. 1:1 ratio at >100 °C with or without H pressure"
  17. ^Wu, Ying et al. (2004)Review of Chemical Processes for the Synthesis of Sodium Borohydride. Millennium Cell Inc.
  18. ^Ouyang, Liuzhang; Zhong, Hao; Li, Hai-Wen; Zhu, Min (2018)."A Recycling Hydrogen Supply System of NaBH4 Based on a Facile Regeneration Process: A Review".Inorganics.6: 10.doi:10.3390/inorganics6010010.
  19. ^Banfi, Luca; Narisano, Enrica; Riva, Renata; Stiasni, Nikola; Hiersemann, Martin; Yamada, Tohru; Tsubo, Tatsuyuki (2014), "Sodium Borohydride",Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, pp. 1–13,doi:10.1002/047084289x.rs052.pub3,ISBN 978-0-470-84289-8
  20. ^Carey, Francis A. (2016-01-07).Organic chemistry. Giuliano, Robert M., 1954– (Tenth ed.). New York, NY.ISBN 978-0-07-351121-4.OCLC 915135847.{{cite book}}: CS1 maint: location missing publisher (link)
  21. ^Loudon, Marc (2009).Organic chemistry (5th ed.). Greenwood Village, Colo.: Roberts and Co.ISBN 978-0-9815194-3-2.OCLC 263409353.
  22. ^Wigfield, Donald C.; Gowland, Frederick W. (March 1977). "The kinetic role of hydroxylic solvent in the reduction of ketones by sodium borohydride. New proposals for mechanism, transition state geometry, and a comment on the origin of stereoselectivity".The Journal of Organic Chemistry.42 (6):1108–1109.doi:10.1021/jo00426a048.
  23. ^Wigfield, Donald C. (January 1979). "Stereochemistry and mechanism of ketone reductions by hydride reagents".Tetrahedron.35 (4):449–462.doi:10.1016/0040-4020(79)80140-4.ISSN 0040-4020.
  24. ^da Costa, Jorge C.S.; Pais, Karla C.; Fernandes, Elisa L.; de Oliveira, Pedro S. M.; Mendonça, Jorge S.; de Souza, Marcus V. N.; Peralta, Mônica A.; Vasconcelos, Thatyana R.A. (2006)."Simple reduction of ethyl, isopropyl and benzyl aromatic esters to alcohols using sodium borohydride-methanol system"(PDF).Arkivoc:128–133. Retrieved29 August 2006.
  25. ^Dalla, V.; Catteau, J.P.; Pale, P. (1999). "Mechanistic rationale for the NaBH4 reduction of α-keto esters".Tetrahedron Letters.40 (28):5193–5196.doi:10.1016/S0040-4039(99)01006-0.
  26. ^Periasamy, Mariappan; Thirumalaikumar, Muniappan (2000). "Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis".Journal of Organometallic Chemistry.609 (1–2):137–151.doi:10.1016/S0022-328X(00)00210-2.
  27. ^Nora de Souza, Marcus Vinícius; Alves Vasconcelos; Thatyana Rocha (1 November 2006). "Recent methodologies mediated by sodium borohydride in the reduction of different classes of compounds".Applied Organometallic Chemistry.20 (11):798–810.doi:10.1002/aoc.1137.
  28. ^Smith, Michael B.;March, Jerry (2007),Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience,ISBN 978-0-471-72091-1
  29. ^Brown, Jack D.; Haddenham, Dustin (2013). "Sodium Borohydride and Iodine".Encyclopedia of Reagents for Organic Synthesis.doi:10.1002/047084289X.rn01598.ISBN 978-0-471-93623-7.
  30. ^Ryschlewitsch, G. E.; Nainan, K. C. (1974). "Octahydrotriborate (1-) ([B3 H8 ]) salts".Inorganic Syntheses. Vol. 15. pp. 111–118.doi:10.1002/9780470132463.ch25.ISBN 978-0-470-13246-3.
  31. ^Lucas, C. R. (1977). "Bis(η5 -Cyclopentadienyl) [Tetrahydroborato(1−)]Titanium".Inorganic Syntheses. Vol. 17. p. 93.doi:10.1002/9780470132487.ch27.ISBN 978-0-470-13248-7.
  32. ^Istek, A. and Gonteki, E. (2009)."Utilization of sodium borohydride (NaBH4) in kraft pulping process"(PDF).Journal of Environmental Biology.30 (6):951–953.PMID 20329388.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^Eun Hee Park, Seong Uk Jeong, Un Ho Jung, Sung Hyun Kim, Jaeyoung Lee, Suk Woo Nam, Tae Hoon Lim, Young Jun Park, Yong Ho Yuc (2007): "Recycling of sodium metaborate to borax".International Journal of Hydrogen Energy, volume 32, issue 14, pages 2982-2987.doi:10.1016/j.ijhydene.2007.03.029
  34. ^Z. P. Li, B. H. Liu. K. Arai, N. Morigazaki, S. Suda (2003): "Protide compounds in hydrogen storage systems".Journal of Alloys and Compounds, volumes 356–357, pages 469-474.doi:10.1016/S0925-8388(02)01241-0
  35. ^Hasan K. Atiyeh and Boyd R. Davis (2007): "Separation of sodium metaborate from sodium borohydride using nanofiltration membranes for hydrogen storage application".International Journal of Hydrogen Energy, volume 32, issue 2, pages 229-236.doi:10.1016/j.ijhydene.2006.06.003
  36. ^Stuart Gary, "Hydrogen storage no longer up in the air" inABC Science 16 August 2012, citingChristian, Meganne; Aguey-Zinsou, Kondo François (2012). "Core–Shell Strategy Leading to High Reversible Hydrogen Storage Capacity for NaBH4".ACS Nano.6 (9):7739–7751.doi:10.1021/nn3030018.PMID 22873406.
  37. ^Masters, Kristin."How to Prevent and Reverse Foxing in Rare Books".bookstellyouwhy.com. Retrieved3 April 2018.
  38. ^Hervé This. Can a cooked egg white be uncooked? The Chemical Intelligencer (Springer Verlag), 1996 (14), 51.
  39. ^abcThis-Benckhard, Hervé (2015), Hargittai, Balazs; Hargittai, István (eds.),"Can a Cooked Egg White Be "Uncooked"?",Culture of Chemistry: The Best Articles on the Human Side of 20th-Century Chemistry from the Archives of the Chemical Intelligencer, Boston, MA: Springer US, p. 71,doi:10.1007/978-1-4899-7565-2_18,ISBN 978-1-4899-7565-2, retrieved2025-01-17
  40. ^"The man who unboiled an egg | Compare and buy | The Observer".www.theguardian.com. Retrieved2025-01-17.
  41. ^Seyden-Penne, J. (1991)Reductions by the Alumino- and Borohydrides in Organic Synthesis. VCH–Lavoisier: Paris. p. 9.ISBN 978-0-471-19036-3

External links

[edit]
Inorganic
Halides
Chalcogenides
Pnictogenides
Oxyhalides
Oxychalcogenides
Oxypnictogenides
Metalates
Others
Organic
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Sodium_borohydride&oldid=1315010321"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp