Following the rising popularity of theiPhone in the late 2000s, the majority of smartphones have featured thin, slate-likeform factors with large,capacitive touch screens with support formulti-touch gestures rather than physical keyboards. Most modern smartphones have the ability for users to download or purchase additionalapplications from a centralizedapp store. They often have support forcloud storage and cloud synchronization, andvirtual assistants. Since the early 2010s, improved hardware and faster wireless communication havebolstered the growth of the smartphone industry. As of 2014[update], over a billion smartphones are sold globally every year. In 2019 alone, 1.54 billion smartphone units were shipped worldwide.[2] As of 2020[update], 75.05 percent of the world population were smartphone users.[3]
In the early 1990s,IBM engineerFrank Canova considered that chip-and-wireless technology was becoming small enough to use inhandheld devices.[5] The first commercially available device that could be properly referred to as a "smartphone" began as a prototype called "Angler" developed by Canova in 1992 while at IBM and demonstrated in November of that year at theCOMDEX computer industry trade show.[6][7][8] A refined version was marketed to consumers in 1994 byBellSouth under the nameSimon Personal Communicator. In addition to placing and receivingcellularcalls, the touchscreen-equipped Simon could send and receivefaxes andemails. It included an address book, calendar, appointment scheduler, calculator, world time clock, and notepad, as well as other visionary mobile applications such as maps, stock reports and news.[9]
The term "smart phone" (intwo words) was not coined until a year after the introduction of the Simon, appearing in print as early as 1995, describing AT&T's PhoneWriter Communicator.[14][non-primary source needed]
The term "smartphone" (asone word) was first used byEricsson in 1997 to describe a new device concept, theGS88.[15]
Beginning in the mid-to-late 1990s, many people who had mobile phones carried a separate dedicated PDA device, running early versions of operating systems such asPalm OS,Newton OS,Symbian orWindows CE/Pocket PC. These operating systems would later evolve into earlymobile operating systems. Most of the "smartphones" in this era were hybrid devices that combined these existing familiar PDA OSes with basic phone hardware. The results were devices that were bulkier than either dedicated mobile phones or PDAs, but allowed a limited amount of cellular Internet access. PDA and mobile phone manufacturers competed in reducing the size of devices. The bulk of these smartphones combined with their high cost and expensive data plans, plus other drawbacks such as expansion limitations and decreased battery life compared to separate standalone devices, generally limited their popularity to "early adopters" and business users who needed portable connectivity.
In March 1996,Hewlett-Packard released theOmniGo 700LX, a modifiedHP 200LXpalmtop PC with aNokia 2110 mobile phonepiggybacked onto it andROM-based software to support it. It had a 640 × 200 resolution CGA compatible four-shade gray-scale LCD screen and could be used to place and receive calls, and to create and receive text messages, emails and faxes. It was also 100%DOS 5.0 compatible, allowing it to run thousands of existing software titles, including early versions ofWindows.
The Nokia 9110 Communicator, opened for access to keyboard
In August 1996,Nokia released theNokia 9000 Communicator, a digital cellular PDA based on theNokia 2110 with an integrated system based on thePEN/GEOS 3.0 operating system fromGeoworks. The two components were attached by a hinge in what became known as aclamshell design, with the display above and a physicalQWERTY keyboard below. The PDA providede-mail; calendar, address book,calculator and notebook applications; text-based Web browsing; and could send and receive faxes. When closed, the device could be used as a digital cellular telephone.
In June 1999,Qualcomm released the "pdQ Smartphone", aCDMA digitalPCS smartphone with an integratedPalm PDA and Internet connectivity.[16]
Subsequent landmark devices included:
TheEricsson R380 (December 2000)[17] byEricsson Mobile Communications,[18] the first phone running the operating system later namedSymbian (it ranEPOC Release 5, which was renamed Symbian OS at Release 6). It had PDA functionality and limited Web browsing on aresistive touchscreen utilizing astylus.[19] While it was marketed as a "smartphone",[20] users could not install their own software on the device.
TheKyocera 6035 (February 2001),[21] a dual-nature device with a separatePalm OS PDA operating system and CDMA mobile phone firmware. It supported limited Web browsing with the PDA software treating the phone hardware as an attached modem.[22][23]
TheNokia 9210 Communicator (June 2001),[24] the first phone running Symbian (Release 6) withNokia'sSeries 80 platform (v1.0). This was the first Symbian phone platform allowing the installation of additional applications. Like the Nokia 9000 Communicator, it is a large clamshell device with a full physicalQWERTY keyboard inside.
Handspring'sTreo 180 (2002), the first smartphone that fully integrated thePalm OS on a GSM mobile phone having telephony, SMS messaging and Internet access built into the OS. The 180 model had a thumb-type keyboard and the180g version had aGraffiti handwriting recognition area, instead.[25]
In 1999, Japanese wireless providerNTT DoCoMo launchedi-mode, a newmobile internet platform which provided data transmission speeds up to 9.6 kilobits per second, and access web services available through the platform such as online shopping. NTT DoCoMo's i-mode usedcHTML, a language which restricted some aspects of traditionalHTML in favor of increasing data speed for the devices. Limited functionality, small screens and limited bandwidth allowed for phones to use the slower data speeds available. The rise of i-mode helped NTT DoCoMo accumulate an estimated 40 million subscribers by the end of 2001, and ranked first in market capitalization in Japan and second globally.[26]
Japanese cell phones increasingly diverged from global standards and trends to offer other forms of advanced services and smartphone-like functionality that were specifically tailored to theJapanese market, such asmobile payments and shopping,near-field communication (NFC) allowingmobile wallet functionality to replacesmart cards for transit fares, loyalty cards, identity cards, event tickets, coupons, money transfer, etc., downloadable content like musicalringtones,games, andcomics, and1segmobile television.[27][28] Phones built by Japanese manufacturers used customfirmware, however, and did not yet feature standardizedmobile operating systems designed to cater tothird-party application development, so their software and ecosystems were akin to very advancedfeature phones. As with other feature phones, additional software and services required partnerships and deals with providers.
The degree of integration between phones and carriers, unique phone features, non-standardized platforms, and tailoring to Japanese culture made it difficult for Japanese manufacturers to export their phones, especially when demand was so high in Japan that the companies did not feel the need to look elsewhere for additional profits.[29][30][31]
The rise of3G technology in other markets and non-Japanese phones with powerful standardizedsmartphone operating systems,app stores, and advanced wireless network capabilities allowed non-Japanese phone manufacturers to finally break in to the Japanese market, gradually adopting Japanese phone features likeemojis, mobile payments, NFC, etc. and spreading them to the rest of the world.
Early smartphones
SeveralBlackBerry smartphones, which were highly popular in the mid-late 2000s
Phones that made effective use of any significant data connectivity were still rare outside Japan until the introduction of theDanger Hiptop in 2002, which saw moderate success among U.S. consumers as theT-Mobile Sidekick. Later, in the mid-2000s, business users in the U.S. started to adopt devices based onMicrosoft'sWindows Mobile, and thenBlackBerry smartphones fromResearch In Motion. American users popularized the term "CrackBerry" in 2006 due to the BlackBerry's addictive nature.[32] In the U.S., the high cost of data plans and relative rarity of devices with Wi-Fi capabilities that could avoid cellular data network usage kept adoption of smartphones mainly to business professionals and "early adopters."
Outside the U.S. and Japan,Nokia was seeing success with its smartphones based onSymbian, originally developed byPsion for their personal organisers, and it was the most popular smartphone OS inEurope during the middle to late 2000s. Initially, Nokia's Symbian smartphones were focused on business with theEseries,[33] similar to Windows Mobile andBlackBerry devices at the time. From 2002 onwards, Nokia started producing consumer-focused smartphones, popularized by the entertainment-focusedNseries. Until 2010, Symbian was the world's most widely used smartphone operating system.[34]
Thetouchscreen personal digital assistant (PDA)–derived nature of adapted operating systems likePalm OS, the "Pocket PC" versions of what was laterWindows Mobile, and theUIQ interface that was originally designed for pen-based PDAs onSymbian OS devices resulted in some early smartphones having stylus-based interfaces. These allowed forvirtual keyboards and handwriting input, thus also allowing easy entry of Asian characters.[35]
TheLG Prada with a large capacitive touchscreen introduced in 2006The originalApple iPhone; following its introduction in 2007, the common smartphone form factor shifted to large touchscreen software interfaces without physical keypads[36]
The late 2000s and early 2010s saw a shift in smartphone interfaces away from devices with physical keyboards and keypads to ones with large finger-operatedcapacitive touchscreens.[36] The first phone of any kind with a large capacitive touchscreen was theLG Prada, announced byLG in December 2006.[37] This was a fashionablefeature phone created in collaboration with Italian luxury designerPrada with a 3" 240 x 400 pixel screen, a 2-Megapixel digital camera with 144p video recording ability, anLED flash, and a miniature mirror for self portraits.[38][39]
In January 2007,Apple Computer introduced theiPhone.[40][41][42] It had a 3.5"capacitive touchscreen with twice the common resolution of mostsmartphone screens at the time,[43] and introducedmulti-touch to phones, which allowed gestures such as "pinching" to zoom in or out on photos, maps, and web pages. The iPhone was notable as being the first device of its kind targeted at the mass market to abandon the use of a stylus, keyboard, or keypad typical of contemporary smartphones, instead using a large touchscreen for direct finger input as its main means of interaction.[35]
The iPhone'soperating system was also a shift away from older operating systems (which older phones supported and which were adapted from PDAs andfeature phones) to an operative system powerful enough to not require using a limited,stripped down web browser that can only render pages specially formatted using technologies such asWML,cHTML, orXHTML and instead ran a version of Apple'sSafari browser that could render full websites[44][45][46] not specifically designed for mobile phones.[47]
Later Apple shipped asoftware update that gave the iPhone a built-in on-device App Store allowing direct wireless downloads ofthird-party software.[48][49] This kind of centralized App Store and freedeveloper tools[50][51] quickly became the new main paradigm for all smartphone platforms for softwaredevelopment,distribution, discovery,installation, and payment, in place of expensive developer tools that required official approval to use and a dependence onthird-party sources providing applications for multiple platforms.[36]
The advantages of a design with software powerful enough to support advanced applications and a large capacitive touchscreen affected the development of another smartphone OS platform,Android, with a more BlackBerry-like prototype device scrapped in favor of a touchscreen device with a slide-out physical keyboard, as Google's engineers thought at the time that a touchscreen could not completely replace a physical keyboard and buttons.[52][53][54] Android is based around a modified Linux kernel, again providing more power thanmobile operating systems adapted from PDAs and feature phones. The first Android device, the horizontal-slidingHTC Dream, was released in September 2008.[55]
In 2012,Asus started experimenting with a convertible docking system namedPadFone, where the standalone handset can when necessary be inserted into atablet-sized screen unit with integrated supportive battery and used as such.
In 2013 and 2014, Samsung experimented with the hybrid combination ofcompact camera and smartphone, releasing theGalaxy S4 Zoom andK Zoom, each equipped with integrated 10×optical zoom lens and manual parameter settings (including manual exposure and focus) years before these were widely adapted among smartphones. The S4 Zoom additionally has a rotary knob ring around the lens and a tripod mount.
While screen sizes have increased, manufacturers have attempted to make smartphones thinner at the expense of utility and sturdiness, since a thinner frame is more vulnerable to bending and has less space for components, namely battery capacity.[56][57]
The iPhone and later touchscreen-only Android devices together popularized the slateform factor, based on a largecapacitive touchscreen as the sole means of interaction, and led to the decline of earlier, keyboard- and keypad-focused platforms.[36] Later, navigation keys such as the home,back,menu,task andsearch buttons have also been increasingly replaced by nonphysical touch keys, then virtual, simulated on-screen navigation keys, commonly with access combinations such as a long press of the task key to simulate a short menu key press, as with home button to search.[58] More recent "bezel-less" types have their screen surface space extended to the unit's front bottom to compensate for the display area lost for simulating the navigation keys. While virtual keys offer more potential customizability, their location may be inconsistent among systems depending on screen rotation and software used.
Multiple vendors attempted to update or replace their existing smartphone platforms and devices to better-compete with Android and the iPhone; Palm unveiled a new platform known aswebOS for itsPalm Pre in late-2009 to replacePalm OS, which featured a focus on a task-based "card" metaphor and seamless synchronization and integration between various online services (as opposed to the then-conventional concept of a smartphone needing a PC to serve as a "canonical, authoritative repository" for user data).[59][60]HP acquired Palm in 2010 and released several other webOS devices, including thePre 3 andHP TouchPad tablet. As part of a proposed divestment of its consumer business to focus on enterprise software, HP abruptly ended development of future webOS devices in August 2011, and sold the rights to webOS toLG Electronics in 2013, for use as asmart TV platform.[61][62]
Research in Motion introduced the vertical-slidingBlackBerry Torch and BlackBerry OS 6 in 2010, which featured a redesigned user interface, support for gestures such as pinch-to-zoom, and a new web browser based on the sameWebKit rendering engine used by the iPhone.[63][64] The following year, RIM released BlackBerry OS 7 and new models in theBold and Torch ranges, which included a new Bold with a touchscreen alongside its keyboard, and the Torch 9860—the first BlackBerry phone to not include a physical keyboard.[65] In 2013, it replaced the legacy BlackBerry OS with a revamped,QNX-based platform known asBlackBerry 10, with the all-touchBlackBerry Z10 and keyboard-equippedQ10 as launch devices.[66]
In 2010, Microsoft unveiled a replacement for Windows Mobile known asWindows Phone, featuring a new touchscreen-centric user interface built aroundflat design and typography, a home screen with "live tiles" containing feeds of updates from apps, as well as integratedMicrosoft Office apps.[67] In February 2011, Nokia announced that it had entered into a major partnership with Microsoft, under which it would exclusively use Windows Phone on all of its future smartphones, and integrate Microsoft'sBing search engine andBing Maps (which, as part of the partnership, would also licenseNokia Maps data) into all future devices. The announcement led to the abandonment of both Symbian, as well asMeeGo—a Linux-based mobile platform it was co-developing with Intel.[68][69][70] Nokia's low-endLumia 520 saw strong demand and helped Windows Phone gain niche popularity in some markets,[71] overtaking BlackBerry in global market share in 2013.[72][73]
In mid-June 2012,Meizu released its mobile operating system,Flyme OS.
Many of these attempts to compete with Android and iPhone were short-lived. Over the course of the decade, the two platforms became a clearduopoly in smartphone sales and market share, with BlackBerry, Windows Phone, and other operating systems eventually stagnating to little or no measurable market share.[74][75] In 2015, BlackBerry began to pivot away from its in-house mobile platforms in favor of producing Android devices, focusing on a security-enhanced distribution of the software. The following year, the company announced that it would also exit the hardware market to focus more on software and its enterprise middleware,[76] and began to license the BlackBerry brand and its Android distribution to third-party OEMs such asTCL for future devices.[77][78]
In September 2013, Microsoft announced its intent to acquire Nokia's mobile device business for $7.1 billion, as part of a strategy under CEOSteve Ballmer for Microsoft to be a "devices and services" company.[79] Despite the growth of Windows Phone and theLumia range (which accounted for nearly 90% of all Windows Phone devices sold),[80] the platform never had significant market share in the key U.S. market,[71] and Microsoft was unable to maintain Windows Phone's momentum in the years that followed, resulting in dwindling interest from users and app developers.[81] After Balmer was succeeded bySatya Nadella (who has placed a larger focus on software and cloud computing) as CEO of Microsoft, it took a $7.6 billionwrite-off on the Nokia assets in July 2015, and laid off nearly the entireMicrosoft Mobile unit in May 2016.[82][83][79]
Prior to the completion of the sale to Microsoft, Nokia released a series of Android-derived smartphones foremerging markets known asNokia X, which combined an Android-based platform with elements of Windows Phone and Nokia's feature phone platformAsha, using Microsoft and Nokia services rather than Google.[84]
By the mid-2000s, higher-endcell phones commonly had integrated digital cameras. In 2003camera phones outsold stand-alone digital cameras, and in 2006 they outsold film and digital stand-alone cameras. Five billion camera phones were sold in five years, and by 2007 more than half of theinstalled base of all mobile phones were camera phones. Sales of separate cameras peaked in 2008.[90]
Many early smartphones did not have cameras at all, and earlier models that had them had low performance and insufficient image and video quality that could not compete with budget pocket cameras and fulfill user's needs.[91] By the beginning of the 2010s almost all smartphones had an integrated digital camera. The decline in sales of stand-alone cameras accelerated due to the increasing use of smartphones with rapidly improving camera technology for casual photography, easierimage manipulation, and abilities to directlyshare photos through the use ofapps and web-based services.[92][93][94][95] By 2011, cell phones with integrated cameras were selling hundreds of millions per year. In 2015, digital camera sales were 35.395 million units or only less than a third of digital camera sales numbers at their peak and also slightly less than film camera sold number at their peak.[96][97]
Contributing to the rise in popularity of smartphones being used over dedicated cameras for photography, smaller pocket cameras have difficulty producingbokeh in images, but nowadays, some smartphones have dual-lens cameras that reproduce the bokeh effect easily, and can even rearrange the level of bokeh after shooting. This works by capturing multiple images with different focus settings, then combining the background of the main image with amacro focus shot.
In 2012, Nokia announced and released theNokia 808 PureView, featuring a 41-megapixel 1/1.2-inch sensor and a high-resolution f/2.4Zeiss all-aspherical one-group lens. The high resolution enables four times of losslessdigital zoom at 1080p and six times at 720p resolution, usingimage sensor cropping.[103] The 2013Nokia Lumia 1020 has a similar high-resolution camera setup, with the addition ofoptical image stabilization and manual camera settings years before common among high-end mobile phones, although lackingexpandable storage that could be of use for accordingly highfile sizes.
Mobileoptical image stabilization was first introduced by Nokia in 2012 with theLumia 920, and the earliest known smartphone with an optically stabilized front camera is theHTC 10 from 2016.[104] Optical image stabilization enables prolongedexposure times for low-light photography and smoothing out handheld video shaking, since the appearance of shakes magnifies over a larger display such as amonitor ortelevision set, which would be detrimental to the watching experience.
Since 2012, smartphones have become increasingly able to capture photos while filming. The resolution of those photos resolution may vary between devices. Samsung has used the highest image sensor resolution at the video's aspect ratio, which at 16:9 is 6 Megapixels (3264 × 1836) on theGalaxy S3 and 9.6 Megapixels (4128 × 2322) on theGalaxy S4.[105][106] The earliest iPhones with such functionality,iPhone 5 and5s, captured simultaneous photos at 0.9 Megapixels (1280 × 720) while filming.[107]
Starting in 2013 on theXperia Z1, Sony experimented with real-timeaugmented reality camera effects such as floating text, virtual plants, volcano, and a dinosaur walking in the scenery.[108] Apple later did similarly in 2017 with theiPhone X.[109]
In the same year,iOS 7 introduced the later widely implemented viewfinder intuition, whereexposure value can be adjusted through vertical swiping, after focus and exposure has been set by tapping, and even while locked after holding down for a brief moment.[110] On some devices, this intuition may be restricted by software in video/slow motion modes and for front camera.
In 2013, Samsung unveiled theGalaxy S4 Zoom smartphone with the grip shape of acompact camera and a 10×optical zoom lens, as well as a rotary knob ring around the lens, as used on higher-end compact cameras, and anISO 1222 tripod mount. It is equipped with manual parameter settings, including for focus and exposure. The successor 2014Samsung Galaxy K Zoom brought resolution and performance enhancements, but lacks the rotary knob and tripod mount to allow for a more smartphone-like shape with less protruding lens.[111]
The 2014Panasonic Lumix DMC-CM1 was another attempt at mixing mobile phone with compact camera, so much so that it inherited theLumix brand. While lacking optical zoom, its image sensor has aformat of 1", as used in high-end compact cameras such as theLumix DMC-LX100 andSony CyberShot DSC-RX100 series, with multiple times the surface size of a typical mobile camera image sensor, as well as support for light sensitivities of up to ISO 25600, well beyond the typical mobile camera light sensitivity range. As of 2021[update], no successor has been released.[112][113]
In 2013 and 2014, HTC experimentally traded in pixel count for pixel surface size on theirOne M7 andM8, both with only four megapixels, marketed asUltraPixel, citing improved brightness and less noise in low light, though the more recent One M8 lacksoptical image stabilization.[114]
The One M8 additionally was one of the earliest smartphones to be equipped with adual camera setup. Its software allows generating visual spatial effects such as 3D panning, weather effects, and focus adjustment ("UFocus"), simulating the postphotographic selective focusing capability of images produced by alight-field camera.[115] HTC returned to a high-megapixel single-camera setup on the 2015One M9.
Meanwhile, in 2014, LG Mobile started experimenting withtime-of-flight camera functionality, where a rearlaser beam that measures distance accelerates autofocus.
In 2016,Apple introduced theiPhone 7 Plus, one of the phones to popularize a dual camera setup. TheiPhone 7 Plus included a main 12 MP camera along with a 12 MP telephoto camera.[116] In early 2018Huawei released a new flagship phone, theHuawei P20 Pro, one of the first triple camera lens setups withLeica optics.[117] In late 2018,Samsung released a new mid-range smartphone, theGalaxy A9 (2018) with the world's first quad camera setup. TheNokia 9 PureView was released in 2019 featuring a penta-lens camera system.[118]
2019 saw the commercialization of high resolution sensors, which usepixel binning to capture more light. 48 MP and 64 MP sensors developed by Sony and Samsung are commonly used by several manufacturers. 108 MP sensors were first implemented in late 2019 and early 2020.
With stronger getting chipsets to handle computing workload demands at higher pixel rates, mobile video resolution and framerate has caught up with dedicated consumer-grade cameras over years.
In 2009, theSamsung Omnia HD became the first mobile phone with720p HD video recording. In the same year, Apple brought video recording initially to theiPhone 3GS, at 480p, whereas the 2007original iPhone and 2008iPhone 3G lacked video recording entirely.
In 2012 and 2013, select devices with 720p filming at 60 frames per second were released: theAsus PadFone 2 andHTC One M7, unlike flagships of Samsung, Sony, and Apple. However, the 2013Samsung Galaxy S4 Zoom does support it.
Other vendors adapted 2160p recording in 2014, including theoptically stabilizedLG G3. Apple first implemented it in late 2015 on theiPhone 6s and 6s Plus.
Sufficient computing performance of chipsets and image sensor resolution and its reading speeds have enabled mobile4320p (8K) filming in 2020, introduced with theSamsung Galaxy S20 andRedmi K30 Pro, though some upper resolution levels were foregone (skipped) throughout development, including1440p (2.5K),2880p (5K), and3240p (6K), except 1440p on Samsung Galaxyfront cameras.
Mid-class
Among mid-range smartphone series, the introduction of higher video resolutions was initially delayed by two to three years compared to flagship counterparts. 720p was widely adapted in 2012, including with theSamsung Galaxy S3 Mini,Sony Xperia go, and 1080p in 2013 on theSamsung Galaxy S4 Mini andHTC One mini.
The proliferation of video resolutions beyond 1080p has been postponed by several years. The mid-classSony Xperia M5 supported 2160p filming in 2016, whereas Samsung's mid-class series such as theGalaxy J andA series were strictly limited to 1080p in resolution and 30 frames per second at any resolution for six years until around 2019, whether and how much for technical reasons is unclear.
Setting
A lower video resolution setting may be desirable to extend recording time by reducing space storage and power consumption.
The camera software of some smartphones is equipped with separate controls for resolution,frame rate, andbit rate. An example of a smartphone with these controls is theLG V10.[119]
Slow motion video
A distinction between different camera software is the method used to store high frame rate video footage, with more recent phones[a] retaining both the image sensor's original output frame rate and audio, while earlier phones do not record audio and stretch the video so it can be played back slowly at default speed.
While the stretched encoding method used on earlier phones enables slow motion playback onvideo player software that lacks manual playback speed control, typically found on older devices, if the aim were to achieve a slow motion effect, the real-time method used by more recent phones offers greater versatility for video editing, where slowed down portions of the footage can be freely selected by the user, and exported into a separate video. A rudimentary video editing software for this purpose is usually pre-installed. The video can optionally be played back at normal (real-time) speed, acting as usual video.
In early 2012, theHTC One X allowed 768×432 pixel slow motion filming at an undocumented frame rate. The output footage has been measured as a third of real-time speed.[120]
In late 2012, theGalaxy Note 2 brought back slow motion, with D1 (720 × 480) at 120 fps. In early 2013, theGalaxy S4 andHTC One M7 recorded at that frame rate with 800 × 450, followed by theNote 3 andiPhone 5s with 720p (1280 × 720) in late 2013, the latter of which retaines audio and original sensor frame rate, as with all later iPhones. In early 2014, theSony Xperia Z2 andHTC One M8 adapted this resolution as well. In late 2014, theiPhone 6 doubled the frame rate to 240 fps, and in late 2015, theiPhone 6s added support for 1080p (1920 × 1080) at 120 frames per second. In early 2015, theGalaxy S6 became the first Samsung mobile phone to retain the sensor framerate and audio, and in early 2016, theGalaxy S7 became the first Samsung mobile phone with 240 fps recording, also at 720p.
In early 2015, theMT6795 chipset byMediaTek promised 1080p@480 fps video recording. The project's status remains indefinite.[121]
Since early 2017, starting with theSony Xperia XZ, smartphones have been released with a slow motion mode that unsustainably records at framerates multiple times as high, by temporarily storing frames on the image sensor's internal burst memory. Such a recording lasts a few real-time seconds at most.
In late 2017, theiPhone 8 brought 1080p at 240 fps, as well as 2160p at 60 fps, followed by the Galaxy S9 in early 2018. In mid-2018, theOnePlus 6 brought 720p at 480 fps, sustainable for one minute.
In early 2021, theOnePlus 9 Pro became the first phone with 2160p at 120 fps.
Emphasis is being put on the front camera since the mid-2010s, where front cameras have reached resolutions as high as typical rear cameras, such as the 2015LG G4 (8 megapixels),Sony Xperia C5 Ultra (13 megapixels), and 2016Sony Xperia XA Ultra (16 megapixels, optically stabilized). The 2015LG V10 brought a dual front camera system where the second has a wider angle for group photography. Samsung implemented a front-camera sweep panorama (panorama selfie) feature since theGalaxy Note 4 to extend the field of view.
In 2019, smartphones started adapting2160p 4K video recording on the front camera, six years after rear camera 2160p commenced with theGalaxy Note 3.
Display advancements
AMoto G7 Power; its display uses a tall aspect ratio and includes a "notch".
In the early 2010s, larger smartphones with screen sizes of at least 140 millimetres (5.5 in) diagonal, dubbed "phablets", began to achieve popularity, with the 2011Samsung Galaxy Note series gaining notably wide adoption.[125][126] In 2013, Huawei launched theHuawei Mate series, sporting a 155 millimetres (6.1 in) HD (1280 x 720) IPS+ LCD display, which was considered to be quite large at the time.[127]
By 2014,1440p displays began to appear on high-end smartphones.[131] In 2015, Sony released theXperia Z5 Premium, featuring a4K resolution display, although only images and videos could actually be rendered at that resolution (all other software was shown at 1080p).[132]
New trends for smartphone displays began to emerge in 2017, with both LG and Samsung releasing flagship smartphones (LG G6 andGalaxy S8), utilizing displays with talleraspect ratios than the common16:9 ratio, and a high screen-to-body ratio, also known as a "bezel-less design". These designs allow the display to have a larger diagonal measurement, but with a slimmer width than 16:9 displays with an equivalent screen size.[133][134][135]Another trend popularized in 2017 were displays containing tab-like cut-outs at the top-centre—colloquially known as a "notch"—to contain the front-facing camera, and sometimes other sensors typically located along the top bezel of a device.[136][137] These designs allow for "edge-to-edge" displays that take up nearly the entire height of the device, with little to no bezel along the top, and sometimes a minimal bottom bezel as well. This design characteristic appeared almost simultaneously on the Sharp Aquos S2 and theEssential Phone,[138] which featured small circular tabs for their cameras, followed just a month later by theiPhone X, which used a wider tab to contain a camera and facial scanning system known asFace ID.[139] The 2016LG V10 had a precursor to the concept, with a portion of the screen wrapped around the camera area in the top-left corner, and the resulting area marketed as a "second" display that could be used for various supplemental features.[140]
Other variations of the practice later emerged, such as a "hole-punch" camera (such as those of theHonor View 20, and Samsung'sGalaxy A8s andGalaxy S10)—eschewing the tabbed "notch" for a circular or rounded-rectangular cut-out within the screen instead,[141] whileOppo released the first "all-screen" phones with no notches at all,[142] including one with a mechanical front camera that pops up from the top of the device (Find X),[143] and a 2019 prototype for a front-facing camera that can be embedded and hidden below the display, using a special partially-translucent screen structure that allows light to reach theimage sensor below the panel.[144] The first implementation was theZTE Axon 20 5G, with a 32 MP sensor manufactured by Visionox.[145]
Displays supportingrefresh rates higher than 60 Hz (such as 90 Hz or 120 Hz) also began to appear on smartphones in 2017; initially confined to "gaming" smartphones such as theRazer Phone (2017) andAsus ROG Phone (2018), they later became more common on flagship phones such as thePixel 4 (2019) andSamsung Galaxy S21 series (2021). Higher refresh rates allow for smoother motion and lower input latency, but often at the cost of battery life. As such, the device may offer a means to disable high refresh rates, or be configured to automatically reduce the refresh rate when there is low on-screen motion.[146][147]
Multi-tasking
An early implementation of multiple simultaneous tasks on a smartphone display are thepicture-in-picture video playback mode ("pop-up play") and "live video list" with playing video thumbnails of the 2012Samsung Galaxy S3, the former of which was later delivered to the 2011Samsung Galaxy Note through a software update.[148][149] Later that year, asplit-screen mode was implemented on theGalaxy Note 2, later retrofitted on the Galaxy S3 through the "premium suite upgrade".[150]
Smartphones utilizingflexible displays were theorized as possible once manufacturing costs and production processes were feasible.[152] In November 2018, the startup company Royole unveiled the first commercially availablefoldable smartphone, the Royole FlexPai. Also that month, Samsung presented a prototype phone featuring an "Infinity Flex Display" at its developers conference, with a smaller, outer display on its "cover", and a larger, tablet-sized display when opened. Samsung stated that it also had to develop a new polymer material to coat the display as opposed to glass.[153][154][155] Samsung officially announced theGalaxy Fold, based on the previously demonstrated prototype, in February 2019 for an originally-scheduled release in late-April.[156] Due to various durability issues with the display and hinge systems encountered by early reviewers, the release of the Galaxy Fold was delayed to September to allow for design changes.[157]
In November 2019, Motorola unveiled a variation of the concept with its re-imagining of theRazr, using a horizontally-folding display to create aclamshell form factor inspired by its previousfeature phone range of the same name.[158] Samsung would unveil a similar device known as theGalaxy Z Flip the following February.[159]
Other developments in the 2010s
The first smartphone with afingerprint reader was theMotorola Atrix 4G in 2011.[160] In September 2013, theiPhone 5S was unveiled as the first smartphone on a major U.S. carrier since the Atrix to feature this technology.[161] Once again, the iPhone popularized this concept. One of the barriers of fingerprint reading amongst consumers was security concerns, howeverApple was able to address these concerns by encrypting this fingerprint data onto the A7 Processor located inside the phone as well as make sure this information could not be accessed by third-party applications and is not stored in iCloud or Apple servers[162]
In 2013,Fairphone launched its first"socially ethical" smartphone at theLondon Design Festival to address concerns regarding the sourcing of materials in the manufacturing[163] followed byShiftphone in 2015.[164] In late 2013, QSAlpha commenced production of a smartphone designed entirely around security, encryption and identity protection.[165]
In October 2013,Motorola Mobility announcedProject Ara, a concept for amodular smartphone platform that would allow users to customize and upgrade their phones with add-on modules that attached magnetically to a frame.[166][167] Ara was retained by Google following its sale of Motorola Mobility toLenovo,[168] but was shelved in 2016.[169] That year, LG and Motorola both unveiled smartphones featuring a limited form of modularity for accessories; theLG G5 allowed accessories to be installed via the removal of its battery compartment,[170] while theMoto Z utilizes accessories attached magnetically to the rear of the device.[171]
Samsung and LG used to be the"last standing" manufacturers to offer flagship devices with user-replaceable batteries.But in 2015, Samsung succumbed to theminimalism trend set by Apple, introducing theGalaxy S6 without a user-replaceable battery.In addition, Samsung was criticised for pruning long-standing features such asMHL, MicroUSB 3.0,water resistance andMicroSD card support, of which the latter two came back in 2016 with theGalaxy S7 and S7 Edge.
As of 2015[update], the globalmedian for smartphone ownership was 43%.[174]Statista forecast that 2.87 billion people would own smartphones in 2020.[175]
Within the same decade, rapid deployment of LTE cellular network and general availability of smartphones have increased popularity of thestreaming television services, and the correspondingmobile TV apps.[176]
Major technologies that began to trend in 2016 included a focus onvirtual reality andaugmented reality experiences catered towards smartphones, the newly introducedUSB-C connector, and improving LTE technologies.[177]
In 2016, adjustablescreen resolution known from desktop operating systems was introduced to smartphones for power saving, whereas variable screenrefresh rates were popularized in 2020.[178][179]
In 2018, the first smartphones featuring fingerprint readers embedded withinOLED displays were announced, followed in 2019 by an implementation using an ultrasonic sensor on theSamsung Galaxy S10.[180][181]
In 2019, the majority of smartphones released have more than one camera, are waterproof with IP67 and IP68 ratings, and unlock using facial recognition or fingerprint scanners.[182]
This layout of the camera viewfinder was first introduced by Apple with iOS 7 in 2013. Towards the late 2010s, several other smartphone vendors have ditched their layouts and implemented variations of this layout.
Designs first implemented by Apple have been replicated by other vendors several times. These include a sealed body that does not allow replacing the battery, a lack of the physical audio connector (since the iPhone 7 from 2016), a screen with a cut-out area at the top for the earphone and front-facing camera and sensors (colloquially known as "notch"; since the iPhone X from 2017), the exclusion of a charging wall adapter from the scope of delivery (since the iPhone 12 from 2019), and a camera user interface with circular and usually solid-colour shutter button and a camera mode selector using perpendicular text and separate camera modes for photo and video (since iOS 7 from 2013).[183][184][185][186][187][188]
Other developments in the 2020s
In 2020, the first smartphones featuring high-speed5G network capability were announced.[189]
Since 2020, smartphones have decreasingly been shipped with rudimentary accessories like apower adapter andheadphones that have historically been almost invariably within the scope of delivery. This trend was initiated with Apple'siPhone 12, followed by Samsung and Xiaomi on theGalaxy S21 andMi 11 respectively, months after havingmocked the same through advertisements. The reason cited is reducing environmental footprint, though reaching raised charging rates supported by newer models demands a new charger shipped through separate packaging with its own environmental footprint.[190]
Mobile/desktop convergence: theLibrem 5 smartphone can be used as a basic desktop computer
With the development of thePinePhone andLibrem 5 in the 2020s, there are intensified efforts to make open sourceGNU/Linux for smartphones a major alternative toiOS and Android.[191][192][193] Moreover, associated software enabledconvergence (beyond convergent[194] andhybrid apps) by allowing the smartphones to be used like a desktop computer when connected to a keyboard, mouse and monitor.[195][196][197][198]
In the early 2020s, manufacturers began to integratesatellite connectivity into smartphone devices for use in remote areas, where local terrestrial communication infrastructures, such aslandline andcellular networks, are not available. Due to the antenna limitations in the conventional phones, in the early stages of implementation satellite connectivity would be limited to thesatellite messaging and satellite emergency services.[199][200]
Hardware
Smartphone with infrared transmitter on top for use as remote control
The performance of mobile CPU depends not only on the clock rate (generally given in multiples ofhertz)[210] but also on thememory hierarchy. Because of these challenges, the performance of mobile phone CPUs is often more appropriately given by scores derived from various standardized tests to measure the real effective performance in commonly used applications.
Buttons
"Device options" menu of Samsung Mobile'sTouchWiz user interface as of 2013, accessed by holding the power button for a secondTheHTC Desire, a 2010 smartphone withoptical trackpad and search button
Smartphones are typically equipped with a power button and volume buttons. Some pairs of volume buttons are unified. Some are equipped with a dedicated camera shutter button. Units for outdoor use may be equipped with an "SOS" emergency call and "PTT" (push-to-talk button). The presence of physical front-side buttons such as thehome and navigation buttons has decreased throughout the 2010s, increasingly becoming replaced by capacitive touch sensors and simulated (on-screen) buttons.[211]
As with classic mobile phones, early smartphones such as theSamsung Omnia II were equipped with buttons for accepting and declining phone calls. Due to the advancements of functionality besides phone calls, these have increasingly been replaced by navigation buttons such as "menu" (also known as "options"), "back", and "tasks". Some early 2010s smartphones such as theHTC Desire were additionally equipped with a "Search" button (🔍) for quick access to a web search engine or apps' internal search feature.[212]
Functions may be assigned to button combinations. For example,screenshots can usually be taken using the home and power buttons, with a short press on iOS and one-second holding Android OS, the two most popular mobile operating systems. On smartphones with no physical home button, usually the volume-down button is instead pressed with the power button. Some smartphones have a screenshot and possiblyscreencast shortcuts in the navigation button bar or the power button menu.[213][214][215]
One of the main characteristics of smartphones is thescreen. Depending on the device's design, the screen fills most or nearly all of the space on a device's front surface. Many smartphone displays have anaspect ratio of16:9, but taller aspect ratios became more common in 2017, as well as the aim to eliminate bezels by extending the display surface to as close to the edges as possible.
Screen sizes
Screen sizes are measured in diagonalinches. Phones with screens larger than 5.2 inches are often called "phablets". Smartphones with screens over 4.5 inches in size are commonly difficult to use with only a single hand, since most thumbs cannot reach the entire screen surface; they may need to be shifted around in the hand, held in one hand and manipulated by the other, or used in place with both hands. Due to design advances, some modern smartphones with large screen sizes and "edge-to-edge" designs have compact builds that improve their ergonomics, while the shift to taller aspect ratios have resulted in phones that have larger screen sizes whilst maintaining the ergonomics associated with smaller 16:9 displays.[216][217][218]
Some devices are equipped with additional input methods such as astylus for higher precision input and hovering detection or aself-capacitive touch screens layer for floating finger detection. The latter has been implemented on few phones such as theSamsung Galaxy S4,Note 3,S5,Alpha, andSony Xperia Sola, making the Galaxy Note 3 the only smartphone with both so far.
Some styluses support hovering as well and are equipped with a button for quick access to relevant tools such as digitalpost-it notes and highlighting of text and elements when dragging while pressed, resembling drag selection using acomputer mouse. Some series such as theSamsung Galaxy Note series andLG G Stylus series have an integrated tray to store the stylus in.[223]
Few devices such as theiPhone 6s untiliPhone Xs andHuawei Mate S are equipped with apressure-sensitive touch screen, where the pressure may be used to simulate a gas pedal in video games, access to preview windows and shortcut menus, controlling the typing cursor, and a weight scale, the latest of which has been rejected by Apple from theApp Store.[224][225]
Some early 2010s HTC smartphones such as theHTC Desire (Bravo) andHTC Legend are equipped with an optical track pad for scrolling and selection.[226]
Many smartphones except Apple iPhones are equipped with low-powerlight-emitting diodes besides the screen that are able to notify the user about incoming messages, missed calls, low battery levels, and facilitate locating the mobile phone in darkness, with marginial power consumption.
To distinguish between the sources of notifications, the colour combination and blinking pattern can vary. Usually three diodes in red, green, and blue (RGB) are able to create a multitude of colour combinations.
Sensors
Smartphones are equipped with a multitude of sensors to enable system features and third-party applications.
Common sensors
Accelerometers andgyroscopes enable automatic control of screen rotation. Uses by third-party software includebubble level simulation. Anambient light sensor allows for automatic screen brightness and contrast adjustment, and anRGB sensor enables the adaption of screen colour.
Many mobile phones are also equipped with abarometer sensor to measure air pressure, such as Samsung since 2012 with theGalaxy S3, and Apple since 2014 with theiPhone 6. It allows estimating and detecting changes in altitude.
Samsung equips their flagship smartphones since the 2014Galaxy S5 andGalaxy Note 4 with aheart rate sensor to assist in fitness-related uses and act as a shutter key for the front-facing camera.[227]
A rear infraredlaser beam for distance measurement can enabletime-of-flight camera functionality with acceleratedautofocus, as implemented on select LG mobile phones starting withLG G3 andLG V10.
Due to their currently rare occurrence among smartphones, not much software to utilize these sensors has been developed yet.
Storage
WhileeMMC (embedded multi media card)flash storage was most commonly used in mobile phones, its successor,UFS (Universal Flash Storage) with higher transfer rates emerged throughout the 2010s for upper-class devices.[230]
Capacity
While the internal storage capacity of mobile phones has been near-stagnant during the first half of the 2010s, it has increased steeper during its second half, withSamsung for example increasing the available internal storage options of their flagship class units from 32 GB to 512 GB within only 21⁄2 years between 2016 and 2018.[231][232][233][234]
The space for data storage of some mobile phones can be expanded usingMicroSDmemory cards, whose capacity has multiplied throughout the 2010s (→SD card § 2009–2019: SDXC). Benefits overUSB on the go storage andcloud storage includeoffline availability andprivacy, not reserving and protruding from thecharging port, no connection instability orlatency, no dependence on voluminousdata plans, and preservation of the limited rewriting cycles of the device's permanent internal storage. Large amounts of data can be moved immediately between devices by changing memory cards, large-scaledata backups can be created offline, and data can be read externally should the smartphone be inoperable.[235][236][237]
In case of technicaldefects which make the device unusable or unbootable as a result of liquid damage, fall damage, screen damage,bending damage,malware, or bogussystem updates,[238] etc., data stored on the memory card is likelyrescueable externally, while data on the inaccessible internal storage would belost. A memory card can usually[b] immediately be re-used in a different memory-card-enabled device with no necessity for priorfile transfers.
Somedual-SIM mobile phones are equipped with a hybrid slot, where one of the two slots can be occupied by either aSIM card or a memory card. Some models, typically of higher end, are equipped with three slots including one dedicated memory card slot, for simultaneous dual-SIM and memory card usage.[239]
Physical location
The location of both SIM and memory card slots vary among devices, where they might be located accessibly behind the back cover or else behind the battery, the latter of which denieshot swapping.[240][241]
Mobile phones with non-removable rear cover typically house SIM and memory cards in a small tray on the handset's frame, ejected by inserting a needle tool into a pinhole.[242]
Some earlier mid-range phones such as the 2011Samsung Galaxy Fit andAce have a sideways memory card slot on the frame covered by a cap that can be opened without tool.[243]
File transfer
Originally,mass storage access was commonly enabled to computers through USB. Over time, mass storage access was removed, leaving theMedia Transfer Protocol as protocol for USB file transfer, due to its non-exclusive access ability where the computer is able to access the storage without it being locked away from the mobile phone's software for the duration of the connection, and no necessity for commonfile system support, as communication is done through anabstraction layer.
However, unlike mass storage, Media Transfer Protocol lacks parallelism, meaning that only a single transfer can run at a time, for which other transfer requests need to wait to finish. This, for example, denies browsing photos and playing back videos from the device during an active file transfer. Some programs and devices lack support for MTP. In addition, the direct access andrandom access of files through MTP is not supported. Any file is wholly downloaded from the device before opened.[244]
Sound
Some audio quality enhancing features, such asVoice over LTE andHD Voice have appeared and are often available on newer smartphones. Sound quality can remain a problem due to the design of the phone, the quality of the cellular network and compression algorithms used inlong-distance calls.[245][246] Audio quality can be improved using aVoIP application overWi-Fi.[247] Cellphones have small speakers so that the user can use aspeakerphone feature and talk to a person on the phone without holding it to their ear. The small speakers can also be used to listen to digital audio files of music or speech or watch videos with an audio component, without holding the phone close to the ear. However, integrated speakers may be small and of restricted sound quality to conserve space.
The3.5mm headphone receptible (coll. "headphone jack") allows the immediate operation of passiveheadphones, as well as connection to other external auxiliary audio appliances. Among devices equipped with the connector, it is more commonly located at the bottom (charging port side) than on the top of the device.
The decline of the connector's availability among newly released mobile phones among all major vendors commenced in 2016 with its lack on the AppleiPhone 7. Anadapter reserving the charging port can retrofit the plug.
Battery-powered, wireless Bluetooth headphones are an alternative. Those tend to be costlier however due to their need for internal hardware such as a Bluetoothtransceiver and a battery with a charging controller, and a Bluetooth coupling is required ahead of each operation.[249]
Batteries chemically wear down as a result of repeated charging and discharging throughout ordinary usage, losing both energy capacity and output power, which results in loss of processing speeds followed by system outages.[250] Battery capacity may be reduced to 80% after few hundred recharges, and the drop in performance accelerates with time.[251][252]Some mobile phones are designed with batteries that can be interchanged upon expiration by the end user, usually by opening the back cover. While such a design had initially been used in most mobile phones, including those with touch screen that were not Apple iPhones, it has largely been usurped throughout the 2010s by permanently built-in, non-replaceable batteries; a design practice criticized forplanned obsolescence.[253]
Due to limitations ofelectrical currents that existing USB cables' copper wires could handle, charging protocols which make use of elevatedvoltages such asQualcomm Quick Charge andMediaTek Pump Express have been developed to increase the power throughput for faster charging, to maximize the usage time without restricted ergonomy and to minimize the time a device needs to be attached to a power source.
The smartphone's integratedcharge controller (IC) requests the elevated voltage from a supportedcharger. "VOOC" by Oppo, also marketed as "dash charge", took the counter approach and increased current to cut out some heat produced from internally regulating the arriving voltage in the end device down to the battery's charging terminal voltage, but is incompatible with existing USB cables, as it requires the thicker copper wires of high-current USB cables. Later,USB Power Delivery (USB-PD) was developed with the aim to standardize the negotiation of charging parameters across devices of up to 100 Watts, but is only supported on cables with USB-C on both endings due to the connector's dedicated PD channels.[254]
While charging rates have been increasing, with 15watts in 2014,[255] 20 Watts in 2016,[256] and 45 watts in 2018,[257] the power throughput may be throttled down significantly during operation of the device.[258][c]
Wireless charging has been widely adapted, allowing for intermittent recharging without wearing down the charging port through frequent reconnection, withQi being the most common standard, followed byPowermat. Due to the lower efficiency of wireless power transmission, charging rates are below that of wired charging, and more heat is produced at similar charging rates.
By the end of 2017, smartphone battery life has become generally adequate;[259] however, earlier smartphone battery life was poor due to the weak batteries that could not handle the significant power requirements of the smartphones' computer systems and color screens.[260][261][262]
Smartphone users purchase additional chargers for use outside the home, at work, and in cars and by buying portable external "battery packs". External battery packs include generic models which are connected to the smartphone with a cable, and custom-made models that "piggyback" onto a smartphone's case. In 2016, Samsung had to recall millions of theGalaxy Note 7 smartphones due to an explosive battery issue.[263] For consumer convenience,wireless charging stations have been introduced in some hotels, bars, and other public spaces.[264]
Power management
A technique to minimize power consumption is the panel self-refresh, whereby the image to be shown on the display is not sent at all times from the processor to the integrated controller (IC) of the display component, but only if the information on screen is changed. The display's integrated controller instead memorizes the last screen contents and refreshes the screen by itself. This technology was introduced around 2014 and has reduced power consumption by a few hundred milliwatts.[265]
Cameras have become standard features of smartphones. As of 2019[update] phone cameras are now a highly competitive area of differentiation between models, with advertising campaigns commonly based on a focus on the quality or capabilities of a device's main cameras.
Images are usually saved in theJPEG file format; some high-end phones since the mid-2010s also haveRAW imaging capability.[266][267]
Space constraints
Typically smartphones have at least one main rear-facing camera and a lower-resolution front-facing camera for "selfies" andvideo chat. Owing to the limited depth available in smartphones forimage sensors andoptics, rear-facing cameras are often housed in a "bump" that is thicker than the rest of the phone. Since increasingly thin mobile phones have more abundant horizontal space than the depth that is necessary and used in dedicated cameras for better lenses, there is additionally a trend for phone manufacturers to include multiple cameras, with each optimized for a different purpose (telephoto,wide angle, etc.).
Viewed from back, rear cameras are commonly located at the top center or top left corner. A cornered location benefits by not requiring other hardware to be packed around the camera module while increasingergonomy, as the lens is less likely to be covered when held horizontally.
Modern advanced smartphones have cameras withoptical image stabilisation (OIS), larger sensors, bright lenses, and even optical zoom plusRAW images.HDR, "Bokeh mode" with multi lenses and multi-shotnight modes are now also familiar.[268] Many new smartphone camera features are being enabled viacomputational photographyimage processing and multiple specialized lenses rather than larger sensors and lenses, due to the constrained space available inside phones that are being made as slim as possible.
Those with two pressure levels resemble thepoint-and-shoot intuition of dedicatedcompact cameras. The camera button may be used as ashortcut to quickly andergonomically launch the camera software, as it is located more accessibly inside a pocket than the power button.
Back cover materials
Back covers of smartphones are typically made ofpolycarbonate, aluminium, or glass. Polycarbonate back covers may be glossy or matte, and possibly textured, like dotted on theGalaxy S5 or leathered on theGalaxy Note 3 andNote 4.
While polycarbonate back covers may be perceived as less "premium" amongfashion- andtrend-oriented users, its utilitarian strengths and technical benefits include durability and shock absorption, greaterelasticity against permanent bending like metal, inability to shatter like glass, which facilitates designing it removable; better manufacturing cost efficiency, and no blockage of radio signals or wireless power like metal.[269][270][271][272]
Accessories
A wide range of accessories are sold for smartphones, includingcases,memory cards,screen protectors,chargers,wireless power stations,USB On-The-Go adapters (for connecting USB drives and or, in some cases, a HDMI cable to an external monitor),MHL adapters, add-on batteries,power banks,headphones, combined headphone-microphones (which, for example, allow a person to privately conductcalls on the device without holding it to the ear), andBluetooth-enabledpowered speakers that enable users to listen to media from their smartphones wirelessly.
Cases range from relatively inexpensive rubber or soft plastic cases which provide moderate protection from bumps and good protection from scratches to more expensive, heavy-duty cases that combine a rubber padding with a hard outer shell. Some cases have a "book"-like form, with a cover that the user opens to use the device; when the cover is closed, it protects the screen. Some "book"-like cases have additional pockets for credit cards, thus enabling people to use them aswallets.
Accessories include products sold by the manufacturer of the smartphone and compatible products made by other manufacturers.
However, some companies, likeApple, stopped including chargers with smartphones in order to "reducecarbon footprint", etc., causing many customers to pay extra for charging adapters.
A mobile operating system (or mobile OS) is anoperating system for phones,tablets,smartwatches, or othermobile devices. Globally,Android andIOS are the two most used mobile operating systems based onusage share, with the former having been the best selling OS globally on all devices since 2013.
Mobile operating systems combine features of apersonal computer operating system with other features useful for mobile or handheld use; usually including, and most of the following considered essential in modern mobile systems; atouchscreen,cellular, Bluetooth, Wi-Fi Protected Access, Wi-Fi,Global Positioning System (GPS) mobile navigation,video- andsingle-frame picture cameras,speech recognition,voice recorder,music player,near-field communication, andinfrared blaster. By Q1 2018, over 383 million smartphones were sold with 85.9 percent running Android, 14.1 percent running iOS and a negligible number of smartphones running other OSes.[273] Android alone is more popular than the popular desktop operating system Windows, and in general, smartphone use (even without tablets) exceeds desktop use. Other well-known mobile operating systems areFlyme OS andHarmony OS.
Mobile devices with mobile communications abilities (e.g., smartphones) contain two mobile operating systems—the main user-facing software platform is supplemented by a second low-level proprietaryreal-time operating system which operates the radio and other hardware. Research has shown that these low-level systems may contain a range of security vulnerabilities permitting maliciousbase stations to gain high levels of control over the mobile device.[274]
A mobile app is a computer program designed to run on a mobile device, such as a smartphone. The term "app" is a short-form of the term "software application".[275]
The introduction of Apple's App Store for the iPhone and iPod Touch in July 2008 popularized manufacturer-hostedonline distribution for third-party applications (software andcomputer programs) focused on a single platform. There are a huge variety of apps, includingvideo games, music products and business tools. Up until that point, smartphone application distribution depended onthird-party sources providing applications for multiple platforms, such asGetJar,Handango,Handmark, andPocketGear. Following the success of the App Store, other smartphone manufacturers launched application stores, such as Google's Android Market (later renamed to the Google Play Store) and RIM'sBlackBerry App World, Android-related app stores likeAptoide,Cafe Bazaar,F-Droid,GetJar, andOpera Mobile Store. In February 2014, 93% ofmobile developers were targeting smartphones first for mobile app development.[276]
Since 1996, smartphone shipments have had positive growth. In November 2011, 27% of all photographs created were taken with camera-equipped smartphones.[277] In September 2012, a study concluded that 4 out of 5 smartphone owners use the device to shop online.[278] Global smartphone sales surpassed the sales figures for feature phones in early 2013.[279] Worldwide shipments of smartphones topped 1 billion units in 2013, up 38% from 2012's 725 million, while comprising a 55% share of the mobile phone market in 2013, up from 42% in 2012. In 2013, smartphone sales began to decline for the first time.[280][281] In Q1 2016 for the first time the shipments dropped by 3 percentyear on year. The situation was caused by the maturing China market.[282] A report by NPD shows that fewer than 10% of US citizens have spent $1,000 or more on smartphones, as they are too expensive for most people, without introducing particularly innovative features, and amidHuawei,Oppo andXiaomi introducing products with similar feature sets for lower prices.[283][284][285] In 2019, smartphone sales declined by 3.2%, the largest in smartphone history, while China and India were credited with driving most smartphone sales worldwide.[286] It is predicted that widespread adoption of 5G will help drive new smartphone sales.[287][288]
In 2011,Samsung had the highest shipmentmarket share worldwide, followed byApple. In 2013, Samsung had 31.3% market share, a slight increase from 30.3% in 2012, while Apple was at 15.3%, a decrease from 18.7% in 2012.Huawei,LG andLenovo were at about 5% each, significantly better than 2012 figures, while others had about 40%, the same as the previous years figure. Only Apple lost market share, although their shipment volume still increased by 12.9%; the rest had significant increases in shipment volumes of 36 to 92%.[289]
In Q1 2014, Samsung had a 31% share and Apple had 16%.[290] In Q4 2014, Apple had a 20.4% share and Samsung had 19.9%.[291] In Q2 2016, Samsung had a 22.3% share and Apple had 12.9%.[292] In Q1 2017, IDC reported that Samsung was first placed, with 80 million units, followed by Apple with 50.8 million, Huawei with 34.6 million,Oppo with 25.5 million andVivo with 22.7 million.[293]
Samsung's mobile business is half the size of Apple's, by revenue. Apple business increased very rapidly in the years 2013 to 2017.[294]Realme, a brand owned by Oppo, is the fastest-growing phone brand worldwide since Q2 2019. In China, Huawei andHonor, a brand owned by Huawei, have 46% of market share combined and posted 66% annual growth as of 2019[update], amid growing Chinese nationalism.[295] In 2019, Samsung had a 74% market share of 5G smartphones in South Korea.[296]
In the first quarter of 2024, global smartphone shipments rose by 7.8% to 289.4 million units. Samsung, with a 20.8% market share, overtook Apple to become the leading smartphone manufacturer. Apple's smartphone shipments dropped 10%. Xiaomi secured the third spot with a 14.1% market share.[297]
Additionally,in many lesser technologically developed regions smartphones are people's first and only means ofInternet access due to their portability,[309][failed verification] withpersonal computers being relatively uncommon outside of business use. The cameras on smartphones can be used to photograph documents and send them via email ormessaging in place of usingfax (facsimile) machines.Payment apps and services on smartphones allow people to make less use of wallets, purses, credit and debit cards, and cash.Mobile banking apps can allow people to deposit checks simply by photographing them, eliminating the need to take the physical check to anATM or teller.Guide book apps can take the place of paper travel and restaurant/business guides, museum brochures, and dedicatedaudio guide equipment.
In many countries, mobile phones are used to providemobile banking services, which may include the ability to transfer cash payments by secure SMS text message. Kenya'sM-PESA mobile banking service, for example, allows customers of the mobile phone operatorSafaricom to hold cash balances which are recorded on their SIM cards. Cash can be deposited or withdrawn from M-PESA accounts at Safaricom retail outlets located throughout the country and can be transferred electronically from person to person and used to pay bills to companies.
Another application of mobile banking technology isZidisha, a US-based nonprofit micro-lending platform that allows residents of developing countries to raise small business loans from Web users worldwide. Zidisha uses mobile banking for loan disbursements and repayments, transferring funds from lenders in the United States to borrowers in rural Africa who have mobile phones and can use the Internet.[311]
Mobile payments were first trialled in Finland in 1998 when two Coca-Cola vending machines inEspoo were enabled to work with SMS payments. Eventually, the idea spread and in 1999, the Philippines launched the country's first commercial mobile payments systems with mobile operatorsGlobe andSmart.
Someapps allows for sending and receivingfacsimile (fax), over a smartphone, including facsimile data (composed of rasterbi-level graphics) generated directly and digitally fromdocument andimage file formats.
Films are increasingly made using smartphones and tablets, leading to the rise of dedicated film festivals for such films, including theSmartFone Flick Fest inSydney, Australia;[315][316] Dublin Smartphone Film Festival; the International Mobil Film Festival based inSan Diego; the Spanish festival Cinephone – Festival Internacional de Cine con Smartphone; the African Smartphone International Film Festival;[317] Toronto Smartphone Film Festival; New York Mobile Film Festival; and others.[318]
Criticism and issues
Social impacts
Manufacture
Cobalt is needed in order to manufacture smartphones' rechargeable batteries. Workers, including children, suffer injuries, amputations, and death as the result of the hazardous working conditions and mine tunnel collapses in theDemocratic Republic of the Congo duringartisanal mining of cobalt.[319] In 2019a lawsuit was filed against Apple and other tech companies for the use ofchild labor in mining cobalt;[320][321] in 2024 the court ruled that the companies were not liable.[322] Apple announced it would convert to using recycled cobalt by 2025.[323]
Some persons might become psychologically attached to smartphones, resulting in anxiety when separated from the devices.[326]
A "smombie" (a combination of "smartphone" and "zombie") is a walking person using a smartphone and not paying attention as they walk, possibly risking an accident in the process, an increasing social phenomenon.[327] The issue of slow-moving smartphone users led to the temporary creation of a "mobile lane" for walking inChongqing,China.[328] The issue of distracted smartphone users led the city ofAugsburg, Germany, to embed pedestrian traffic lights in the pavement.[329]
ANew York City driver holding two phonesA user consulting a mapping app on a phone
Mobile phone use while driving—includingcalling,text messaging, playing media,web browsing,gaming, using mapping apps or operating other phone features—is common but controversial, since it is widely considered dangerous due to what is known asdistracted driving. Being distracted while operating a motor vehicle has been shown to increase the risk ofaccidents. In September 2010, the USNational Highway Traffic Safety Administration (NHTSA) reported that 995 people were killed by drivers distracted by phones. In March 2011 a US insurance company,State Farm Insurance, announced the results of a study which showed 19% of drivers surveyed accessed the Internet on a smartphone while driving.[330] Many jurisdictions prohibit the use of mobile phones while driving. In Egypt, Israel, Japan, Portugal and Singapore, both handheld and hands-freecalling on a mobile phone (which uses aspeakerphone) is banned. In other countries, including the UK and France, and in many US states, calling is only banned on handheld phones, while hands-free calling is permitted.
A 2011 study reported that over 90% of college students surveyed text (initiate, reply or read) while driving.[331]Thescientific literature on the danger of driving while sending a text message from a mobile phone, ortexting while driving, is limited. A simulation study at theUniversity of Utah found a sixfold increase in distraction-related accidents when texting.[332] Due to the complexity of smartphones that began to grow more after, this has introduced additional difficulties for law enforcement officials when attempting to distinguish one usage from another in drivers using their devices. This is more apparent in countries which ban both handheld and hands-free usage, rather than those which ban handheld use only, as officials cannot easily tell which function of the phone is being used simply by looking at the driver. This can lead to drivers being stopped for using their device illegally for a call when, in fact, they were using the device legally, for example, when using the phone's incorporated controls for car stereo,GPS orsatnav.
A 2010 study reviewed the incidence of phone use whilecycling and its effects on behavior and safety.[333] In 2013 a national survey in the US reported the number of drivers who reported using their phones to access the Internet while driving had risen to nearly one of four.[334] A study conducted by the University of Vienna examined approaches for reducing inappropriate and problematic use of mobile phones, such as using phones while driving.[335]
Accidents involving a driver being distracted by being in acall on a phone have begun to be prosecuted as negligence similar to speeding. In theUnited Kingdom, from 27 February 2007, motorists who are caught using a handheld phone while driving will have three penalty points added to their license in addition to the fine of £60.[336] This increase was introduced to try to stem the increase in drivers ignoring the law.[337]Japan prohibits all use of phones while driving, including use of hands-free devices. New Zealand has banned handheld phone use since 1 November 2009. Many states in the United States have banned text messaging on phones while driving. Illinois became the 17th American state to enforce this law.[338] As of July 2010[update], 30 states had banned texting while driving, with Kentucky becoming the most recent addition on July 15.[339]
Public Health Law Research maintains a list of distracted driving laws in theUnited States. This database of laws provides a comprehensive view of the provisions of laws that restrict the use of mobile devices while driving for all 50 states and the District of Columbia between 1992, when first law was passed through December 1, 2010. The dataset contains information on 22 dichotomous, continuous or categorical variables including, for example, activities regulated (e.g., texting versus talking, hands-free versus handheld calls, web browsing, gaming), targeted populations, and exemptions.[340]
A "patent war" between Samsung and Apple started when the latter claimed that the originalGalaxy S Android phone copied the interface—and possibly the hardware—of Apple's iOS for theiPhone 3GS. There was also smartphone patents licensing and litigation involvingSony Mobile,Google,Apple Inc.,Samsung,Microsoft,Nokia,Motorola,HTC,Huawei andZTE, among others. The conflict is part of thewider "patent wars" between multinational technology and software corporations. To secure and increasemarket share, companies granted apatent can sue to prevent competitors from using the methods the patent covers. Since the 2010s the number of lawsuits, counter-suits, and trade complaints based on patents anddesigns in the market for smartphones, and devices based onsmartphone OSes such as Android and iOS, has increased significantly. Initial suits, countersuits, rulings, license agreements, and other major events began in 2009 as the smartphone market stated to grow more rapidly by 2012.
With the rise in number of mobile medical apps in the market place, government regulatory agencies raised concerns on the safety of the use of such applications. These concerns were transformed into regulation initiatives worldwide with the aim of safeguarding users from untrusted medical advice.[341] According to the findings of these medical experts in recent years, excessive smartphone use in society may lead to headaches, sleep disorders and insufficient sleep, while severe smartphone addiction may lead to physical health problems, such as hunchback, muscle relaxation and uneven nutrition.[342]
Smartphone malware is easily distributed through an insecure app store.[343][344] Often, malware is hidden inpirated versions of legitimate apps, which are then distributed through third-party app stores.[345][346] Malware risk also comes from what is known as an "update attack", where a legitimate application is later changed to include a malware component, which users then install when they are notified that the app has been updated.[347] As well, one out of three robberies in 2012 in the United States involved the theft of a mobile phone. An online petition has urged smartphone makers to installkill switches in their devices.[348] In 2014, Apple's "Find my iPhone" and Google's "Android Device Manager" can locate, disable, and wipe the data from phones that have been lost or stolen. With BlackBerry Protect in OS version 10.3.2, devices can be rendered unrecoverable to even BlackBerry's own Operating System recovery tools if incorrectly authenticated or dissociated from their account.[349]
Leaked documents from 2013 to 2016 codenamedVault 7 detail the capabilities of theUnited StatesCentral Intelligence Agency (CIA) to perform electronic surveillance andcyber warfare, including the ability to compromise the operating systems of most smartphones (including iOS and Android).[350][351] In 2021, journalists and researchers reported the discovery ofspyware, calledPegasus, developed and distributed by a private company which can and has been used to infect iOS and Android smartphones often—partly via use of0-day exploits—without the need for any user-interaction or significant clues to the user and then be used to exfiltrate data, track user locations, capture film through its camera, and activate the microphone at any time.[352] Analysisof data traffic by popular smartphones running variants of Android found substantial by-default data collection and sharing with no opt-out by thispre-installed software.[353][354]
Guidelines for mobile device security were issued by NIST[355] and many other organizations. For conducting a private, in-person meeting, at least one site recommends that the user switch the smartphone off and disconnect the battery.[356]
Using smartphones late at night can disturb sleep, due to the blue light and brightly lit screen, which affectsmelatonin levels andsleep cycles. In an effort to alleviate these issues, "Night Mode" functionality to change thecolor temperature of a screen to a warmer hue based on the time of day to reduce the amount of blue light generated became available through several apps for Android and thef.lux software forjailbroken iPhones.[357]iOS 9.3 integrated a similar, system-level feature known as "Night Shift." Several Android device manufacturers bypassed Google's initial reluctance to make Night Mode a standard feature in Android and included software for it on their hardware under varying names, beforeAndroid Oreo added it to the OS for compatible devices.[358]
It has also been theorized that for some users, addiction to use of their phones, especially before they go to bed, can result in "ego depletion." Many people also use their phones as alarm clocks, which can also lead to loss of sleep.[359][360][361][362][363]
Replacement of dedicated digital cameras
As the 2010s decade commenced, the sale figures of dedicated compact cameras decreased sharply since mobile phone cameras were increasingly perceived as serving as a sufficient surrogate camera.[364]
Increases in computing power in mobile phones enabled fast image processing and high-resolution filming, with 1080p Full HD being achieved in 2011 and the barrier to 2160p 4K being breached in 2013.
However, due to design and space limitations, smartphones lack several features found even on low-budget compact cameras, including ahot-swappable memory card and battery for nearly uninterrupted operation, physical buttons and knobs for focusing and capturing and zooming, abolt thread tripod mount, acapacitor-chargedxenon flash that exceeds the brightness of smartphones' LED flashlights, and an ergonomic grip for steadier holding during handheld shooting, which enables longer exposure times. Since dedicated cameras can be more spacious, they can house larger image sensors and featureoptical zooming.
Since the late 2010s, smartphone manufacturers have bypassed the lack of optical zoom to a limited extent by incorporating additional rear cameras with fixed magnification levels.[365][366]
In mobile phones released since the second half of the 2010s, operational life span commonly is limited by built-in batteries which are not designed to be interchangeable. The life expectancy of batteries depends on usage intensity of the powered device, where activity (longer usage) and tasks demanding more energy expire the battery earlier.
Lithium-ion andlithium-polymer batteries, those commonly poweringportable electronics, additionally wear down more from fuller charge and deeper discharge cycles, and when unused for an extended amount of time while depleted, where self-discharging may lead to a harmful depth of discharge.[367][368][369]
Manufacturers have prevented some smartphones from operating after repairs, by associating components' unique serial numbers to the device so it will refuse to operate or disable some functionality in case of a mismatch that would occur after a replacement. Locking of the serial number was first documented in 2015 on theiPhone 6, which would become inoperable from a detected replacement of the "home" button. Later, some functionality was restricted on Apple and Samsung smartphones when a battery replacement not authorized by the vendor was detected.[370][371]
^Presuming commonfile system support, which is usually given. Some software-specific data left over from a previous device might not be relevant on the new device.
^I.e. while the device is not in stand-by mode or charging while the main operating system is powered off.
^Sager, Ira (June 29, 2012)."Before IPhone and Android Came Simon, the First Smartphones".Bloomberg Businessweek. Bloomberg L.P. Archived fromthe original on July 1, 2012. RetrievedJune 30, 2012.Simon was the first smartphone. Twenty years ago, it envisioned our app-happy mobile lives, squeezing the features of a cell phone, pager, fax machine, and computer into an 18-ounce black brick.
^Schneidawind, John (November 23, 1992). "Poindexter putting finger on PC bugs; Big Blue unveiling".USA Today. p. 2B.
^Savage, Pamela (January 1995)."Designing a GUI for Business Telephone users".Interactions.2. Association for Computing Machinery:32–41.doi:10.1145/208143.208157.ISSN1072-5520.S2CID19863684. RetrievedSeptember 13, 2014....It is at this point that early usability test participants met impasse. The switch connected to our "smart phone" is expecting the typical "dumb end-point"... AT&T's PhoneWriter was demonstrated at the 1993 Comdex Computer Show...
^Stewart, Devin (April 29, 2010)."Slowing Japan's Galapagos Syndrome".Huffington Post. RetrievedJune 24, 2010.'Galapagos syndrome', a phrase originally coined to describe Japanese cell phones that were so advanced they had little in common with devices used in the rest of the world, could potentially spread to other parts of society. Indeed signs suggest it is happening already.
^Mossberg, Walter S.; Boehret, Katherine (June 26, 2007)."The iPhone Is a Breakthrough Handheld Computer".The Mossberg Solution. Archived fromthe original on June 14, 2021. RetrievedOctober 17, 2019.The iPhone is the first smart phone we've tested with a real, computer-grade Web browser, a version of Apple's Safari. It displays entire Web pages, in their real layouts, and allows you to zoom in quickly by either tapping or pinching with your finger.
^Levy, Steven (June 25, 2007)."First Look: Test Driving the iPhone".Newsweek. RetrievedOctober 16, 2019.Web-browsing is where the iPhone leaves competitors in the dust. It does the best job yet of compressing the World Wide Web on a palm-size device. The screen can nicely display an entire Web page, and by dragging, tapping, pinching and stretching your fingers you can zero in on the part of the page you want to read. Web pages you wouldn't dare go to on other phones are suddenly accessible
^Baig, Ed (June 26, 2007)."iPhone Review".USA Today. RetrievedOctober 16, 2019.This is the closest thing to the real-deal Internet that I've seen on a pocket-size device ... IPhone runs Apple's Safari browser. You can view full Web pages, then double-tap the screen to zoom in. Or pinch to make text larger. Sliding your finger moves the page around. Rotating iPhone lets you view a page widescreen.
^Shea, Dave (January 9, 2007)."iMobile".mezzoblue.com. Archived fromthe original on October 17, 2019. RetrievedOctober 16, 2019.It doesn't run a stripped-down mobile browser that delivers a sub-par experience, it runs Safari - a customized version with special UI tweaks, but that's still WebKit under the hood. It will render your site the same way your desktop does.
^c. f. camera software of Samsung since the Galaxy S10, of Huawei since the P20, of LG since the G8, since the OnePlus 6, of Xiaomi since Redmi Note 5, and of UleFone smartphones released since at least 2017 (as of 2022).
^Ward, J. R.; Phillips, M. J. (April 1, 1987). "Digitizer Technology: Performance Characteristics and the Effects on the User Interface".IEEE Computer Graphics and Applications.7 (4):31–44.doi:10.1109/MCG.1987.276869.ISSN0272-1716.S2CID16707568.
^Cheever, N. A.; Rosen, L. D.; Carrier, L. M.; Chavez, A. (2014). "Out of sight is not out of mind: The impact of restricting wireless mobile device use on anxiety levels among low, moderate and high users".Computers in Human Behavior.37:290–297.doi:10.1016/j.chb.2014.05.002.S2CID9196376.
^Atchley, Paul; Atwood, Stephanie; Boulton, Aaron (January 2011). "The Choice to Text and Drive in Younger Drivers: Behaviour May Shape Attitude".Accident Analysis and Prevention.43 (1):134–142.doi:10.1016/j.aap.2010.08.003.PMID21094307.
^Shankar, S Barani; Rani, S Leslie; Brundha, M P (July 2020). "Comparison study of factors associated with smartphone addiction among college students".Drug Invention Today.14 (7):1165–1168.ISSN0975-7619 – via Academic Search Complete.
^Alexios, Mylonas; Bill, Tsoumas; Stelios, Dritsas; Dimitris, Gritzalis (2011).8th International Conference on Trust, Privacy & Security in Digital Business (TRUSTBUS-2011). Springer Berlin / Heidelberg. pp. 49–61.
^Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. (2011). "Cycle-life model for graphite-LiFePO4 cells".Journal of Power Sources.196 (8):3942–3948.Bibcode:2011JPS...196.3942W.doi:10.1016/j.jpowsour.2010.11.134.
^Saxena, S.; Hendricks, C.; Pecht, M. (2016). "Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges".Journal of Power Sources.327:394–400.Bibcode:2016JPS...327..394S.doi:10.1016/j.jpowsour.2016.07.057.