Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

SkyCube (satellite)

From Wikipedia, the free encyclopedia
(Redirected fromSkyCube)
Crowdfunded satellite project
This article is about a satellite. For the airline with callsign "SKY CUBE", seeSky Lease Cargo. For the map projection, seeCOBE sky cube.
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "SkyCube" satellite – news ·newspapers ·books ·scholar ·JSTOR
(February 2014) (Learn how and when to remove this message)

SkyCube
SkyCube in undeployed state
Mission typeEarth imaging
OperatorSouthern Stars
COSPAR ID1998-067ENEdit this at Wikidata
SATCATno.39569
Mission duration60–90 days (planned)
Spacecraft properties
Spacecraft type1UCubeSat
ManufacturerNanoracks
Launch mass1.3 kg (2.9 lb)
Start of mission
Launch date9 January 2014, 18:07:05UTC
RocketAntares 120
Launch siteMARS,LP-0A
ContractorOrbital Sciences
Deployed fromInternational Space Station
Deployment date28 February 2014
End of mission
Last contact27 March 2014
Decay date9 November 2014
Orbital parameters
Reference systemGeocentric orbit[1]
RegimeLow Earth orbit
Perigee altitude408 km (254 mi)
Apogee altitude414 km (257 mi)
Inclination51.65°
Period92.79 minutes

SkyCube was an AmericancrowdsourcedCubeSat. It was first announced onKickstarter on 14 July 2012 and successfully funded on 12 September 2012, meeting its US$82,500 goal with a total of US$116,890. It was developed and built in 2012–2013, completed flight integration atNanoracks in late 2013,[2] and launched aboard theCygnus CRS Orb-1 flight[3] at theMid-Atlantic Regional Spaceport onWallops Island,Virginia on 9 January 2014. SkyCube was deployed from theInternational Space Station on 28 February 2014. Contact with the satellite was last made on 27 March 2014. SkyCube re-entered the Earth's atmosphere on 9 November 2014.[4] It is one of severalcrowdfunded satellites launched during the 2010s.[5]

Mission

[edit]

SkyCube had three major mission components: the broadcast of messages from its radio, the capture of pictures from space via its three cameras, and the deployment of a large balloon.

Messages

[edit]

The SkyCube radio emitted periodic beaconing pings which contained 120-byte messages from the Kickstarter backers. These pings were transmitted at 915 MHz, using theAX.25 protocol at 9600 baud with BPSK modulation, with a callsign of WG9XMF.[6]

Imaging

[edit]

Using its three cameras, SkyCube intended to take pictures of the Earth from orbit. The cameras were VGA resolution and had lenses with three different fields of view (120°, 35°, and 6°), giving a variety of imaging possibilities. The images would have been transmitted back to Earth at 57.6 kbit/s. Kickstarter backers chose when the pictures were taken.National Oceanic and Atmospheric Administration (NOAA) granted a 90-day imaging license to SkyCube on 1 February 2013.[7]

Balloon

[edit]

SkyCube would have deployed a large (2 m (6 ft 7 in)) balloon at the end of its mission. The balloon was coated with reflectivetitanium dioxide and made it visible from the ground. The balloon increased theatmospheric drag on SkyCube, and within two weeks the orbit would have decayed enough for SkyCube to enter Earth's atmosphere and burn up safely. The inflation was intended to be triggered via 4-gram CO2 canister.

Mission Failure

[edit]

Several attempts were made to establish connection with the satellite, following its deployment. Initial attempts failed, but eventually basic telemetry was received, which indicated that at least one solar panel failed to deploy.[8] However, subsequent communication attempts were made to send commands to the satellite, but none created a response. The fact that the satellite's orbit did not decay as quickly as those other CubeSats launched indicates that it experienced less drag, which also supports the conclusion that there was not a sufficient solar panel deployment.[9]

Technical specifications

[edit]
Dimensions10 × 10 × 11.3 cmCubeSat standard
Interface specificationISIPOD 1.4I
Mass1.3 kg (2.9 lb)
Expected lifetime60 – 90 days
Attitude control systemPassive magnotorquers
Power9 total panels: one roof panel and 8 deployable panels. Each panel consists of 24Spectrolab triangular cells wired in series-parallel for a nominal 12 V.
Batteries2 xLi-ion 18650 cells, 8.4 V 2300 mAh, Molicell ICR18650J.
Power bus3.3 V, 5 V regulated. Constant-current driver for solar panel deployment (Nichrome burn wires).
Primary downlink915 MHz,AX.25 protocol,BPSK modulation, 57.6 kbit/s
Telemetry/messaging downlink915 MHz,AX.25 protocol,BPSK modulation, 9.6 kbit/s
Command uplink450 MHz,AX.25 protocol,FSK modulation, 9.6 kbit/s

Partnerships

[edit]

SkyCube relied on several partners to provide necessary services:

OrganizationFunction
Naval Postgraduate SchoolGround station services in North America and Hawaii[10]
Saber AstronauticsGround station and Mission Control services in Australia[11]
Orbital SciencesLaunch provider
NanoracksIntegrator[2]
Astronautical Development, LLCRadios and structural components

Further reading

[edit]

See also

[edit]

References

[edit]
  1. ^McDowell, Jonathan."Satellite Catalog". Jonathan's Space Report. Retrieved3 May 2018.
  2. ^ab"Nanoracks Completes Flight Integration of CubeSats Bound on Orb1 to the ISS". 15 November 2013.
  3. ^"New Science Bound for Station on Orbital's Cygnus". 4 April 2015. Archived fromthe original on 6 February 2014. Retrieved2 February 2014.
  4. ^"About Southern Stars". Retrieved10 December 2022.
  5. ^Reyes, Matthew (7 April 2014)."DIY Satellites: Now and Near Future | Make".makezine.com. Retrieved5 January 2019.
  6. ^"FCC Experimental License for SkyCube". FCC.Public Domain This article incorporates text from this source, which is in thepublic domain.
  7. ^"SkyCube Private Remote Sensing License: Public Summary"(PDF). NOAA. Archived fromthe original(PDF) on 22 February 2014. Retrieved3 February 2014.Public Domain This article incorporates text from this source, which is in thepublic domain.
  8. ^"Update 35: We Have Identified SkyCube · SkyCube: The First Satellite Launched by You!". Retrieved2 April 2022.
  9. ^"Update 37: Looking Back, Looking Forward · SkyCube: The First Satellite Launched by You!". Retrieved2 April 2022.
  10. ^"Mobile CubeSat Command and Control (MC3) Ground Stations"(PDF). Archived fromthe original(PDF) on 4 March 2014. Retrieved9 February 2014.
  11. ^"29 October 2013: Space Operations Deal Signed with Southern Stars". Archived fromthe original on 22 February 2014.
  12. ^"SJ startup to launch crowdfunded satellite into space".

External links

[edit]
January
February
March
April
May
June
July
August
September
October
November
December
Launches are separated by dots ( • ), payloads by commas ( , ), multiple names for the same satellite by slashes ( / ).
Crewed flights are underlined. Launch failures are marked with the † sign. Payloads deployed from other spacecraft are (enclosed in parentheses).
Retrieved from "https://en.wikipedia.org/w/index.php?title=SkyCube_(satellite)&oldid=1319012573"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp