Inmathematical logic,Skolem arithmetic is thefirst-order theory of thenatural numbers withmultiplication, named in honor ofThoralf Skolem. Thesignature of Skolem arithmetic contains only the multiplication operation and equality, omitting the addition operation entirely.
Skolem arithmetic is weaker thanPeano arithmetic, which includes both addition and multiplication operations.[1] Unlike Peano arithmetic, Skolem arithmetic is adecidable theory. This means it is possible to effectively determine, for any sentence in the language of Skolem arithmetic, whether that sentence is provable from the axioms of Skolem arithmetic. The asymptotic running-timecomputational complexity of thisdecision problem is triply exponential.[2]
We define the following abbreviations.
The axioms of Skolem arithmetic are:[3]
First-order logic with equality and multiplication of positive integers can express the relation. Using this relation and equality, we can define the following relations on positive integers:
The truth value of formulas of Skolem arithmetic can be reduced to the truth value of sequences of non-negative integers constituting their prime factor decomposition, with multiplication becoming point-wise addition of sequences. The decidability then follows from theFeferman–Vaught theorem that can be shown usingquantifier elimination. Another way of stating this is that first-order theory of positive integers is isomorphic to the first-order theory of finitemultisets of non-negative integers with the multiset sum operation, whose decidability reduces to the decidability of the theory of elements.
In more detail, according to thefundamental theorem of arithmetic, a positive integer can be represented as a product of prime powers:
If a prime number does not appear as a factor, we define its exponent to be zero. Thus, only finitely many exponents are non-zero in the infinite sequence. Denote such sequences of non-negative integers by.
Now consider the decomposition of another positive number,
The multiplication corresponds point-wise addition of the exponents:
Define the corresponding point-wise addition on sequences by:
Thus we have an isomorphism between the structure of positive integers with multiplication, and of point-wise addition of the sequences of non-negative integers in which only finitely many elements are non-zero,.
FromFeferman–Vaught theorem forfirst-order logic, the truth value of a first-order logic formula over sequences and pointwise addition on them reduces, in an algorithmic way, to the truth value of formulas in the theory of elements of the sequence with addition, which, in this case, isPresburger arithmetic. Because Presburger arithmetic is decidable, Skolem arithmetic is also decidable.
Ferrante & Rackoff (1979, Chapter 5) establish, usingEhrenfeucht–Fraïssé games, a method to prove upper bounds on decision problem complexity of weak direct powers of theories. They apply this method to obtain triply exponential space complexity for, and thus of Skolem arithmetic.
Grädel (1989, Section 5) proves that thesatisfiability problem for thequantifier-free fragment of Skolem arithmetic belongs to theNP complexity class.
Thanks to the above reduction using Feferman–Vaught theorem, we can obtain first-order theories whose open formulas define a larger set of relations if we strengthen the theory of multisets of prime factors. For example, consider the relation that is true if and only if and have the equal number of distinct prime factors:
For example, because both sides denote a number that has two distinct prime factors.
If we add the relation to Skolem arithmetic, it remains decidable. This is because the theory of sets of indices remains decidable in the presence of theequinumerosity operator on sets, as shown by theFeferman–Vaught theorem.
An extension of Skolem arithmetic with the successor predicate, can define the addition relation using Tarski's identity:[4][5]
and defining the relation on positive integers by
Because it can express both multiplication and addition, the resulting theory is undecidable.
If we have an ordering predicate on natural numbers (less than,), we can express by
so the extension with is also undecidable.