Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Shear modulus

From Wikipedia, the free encyclopedia
Ratio of shear stress to shear strain
Shear modulus
Common symbols
G,S,μ
SI unitPa
Derivations from
other quantities
G =τ /γ =E / [2(1 +ν)]
Shear strain

Insolid mechanics, theshear modulus ormodulus of rigidity, denoted byG, or sometimesS orμ, is a measure of theelastic shear stiffness of a material and is defined as the ratio ofshear stress to theshear strain:[1]

G =def τxyγxy=F/AΔx/l=FlAΔx{\displaystyle G\ {\stackrel {\mathrm {def} }{=}}\ {\frac {\tau _{xy}}{\gamma _{xy}}}={\frac {F/A}{\Delta x/l}}={\frac {Fl}{A\Delta x}}}

where

τxy=F/A{\displaystyle \tau _{xy}=F/A\,} = shear stress
F{\displaystyle F} is the force which acts
A{\displaystyle A} is the area on which the force acts
γxy{\displaystyle \gamma _{xy}} = shear strain. In engineering:=Δx/l=tanθ{\displaystyle :=\Delta x/l=\tan \theta }, elsewhere:=θ{\displaystyle :=\theta }
Δx{\displaystyle \Delta x} is the transverse displacement
l{\displaystyle l} is the initial length of the area.

The derivedSI unit of shear modulus is thepascal (Pa), although it is usually expressed ingigapascals (GPa) or in thousandpounds per square inch (ksi). Itsdimensional form is M1L−1T−2, replacingforce bymass timesacceleration.

Explanation

[edit]
MaterialTypical values for
shear modulus (GPa)
(at room temperature)
Diamond[2]478.0
Steel[3]79.3
Iron[4]52.5
Copper[5]44.7
Titanium[3]41.4
Glass[3]26.2
Aluminium[3]25.5
Polyethylene[3]0.117
Rubber[6]0.0006
Granite[7][8]24
Shale[7][8]1.6
Limestone[7][8]24
Chalk[7][8]3.2
Sandstone[7][8]0.4
Wood4

The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalizedHooke's law:

  • Young's modulusE describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
  • thePoisson's ratioν describes the response in the directions orthogonal to this uniaxial stress (the wire getting thinner and the column thicker),
  • thebulk modulusK describes the material's response to (uniform)hydrostatic pressure (like the pressure at the bottom of the ocean or a deep swimming pool),
  • theshear modulusG describes the material's response to shear stress (like cutting it with dull scissors).

These moduli are not independent, and forisotropic materials they are connected via the equations[9]

E=2G(1+ν)=3K(12ν){\displaystyle E=2G(1+\nu )=3K(1-2\nu )}

The shear modulus is concerned with the deformation of a solid when it experiences a force perpendicular to one of its surfaces while its opposite face experiences an opposing force (such as friction). In the case of an object shaped like a rectangular prism, it will deform into aparallelepiped.Anisotropic materials such aswood,paper and also essentially all single crystals exhibit differing material response to stress or strain when tested in different directions. In this case, one may need to use the fulltensor-expression of the elastic constants, rather than a single scalar value.

One possible definition of afluid would be a material with zero shear modulus.

Shear waves

[edit]
Influences of selected glass component additions on the shear modulus of a specific base glass.[10]

In homogeneous andisotropic solids, there are two kinds of waves,pressure waves andshear waves. The velocity of a shear wave,(vs){\displaystyle (v_{s})} is controlled by the shear modulus,

vs=Gρ{\displaystyle v_{s}={\sqrt {\frac {G}{\rho }}}}

where

G is the shear modulus
ρ{\displaystyle \rho } is the solid'sdensity.

Shear modulus of metals

[edit]
Shear modulus of copper as a function of temperature. The experimental data[11][12] are shown with colored symbols.

The shear modulus of metals is usually observed to decrease with increasing temperature. At high pressures, the shear modulus also appears to increase with the applied pressure. Correlations between the melting temperature, vacancy formation energy, and the shear modulus have been observed in many metals.[13]

Several models exist that attempt to predict the shear modulus of metals (and possibly that of alloys). Shear modulus models that have been used in plastic flow computations include:

  1. the Varshni-Chen-Gray model developed by[14] and used in conjunction with the Mechanical Threshold Stress (MTS) plasticflow stress model.[15][16]
  2. the Steinberg-Cochran-Guinan (SCG) shear modulus model developed by[17] and used in conjunction with the Steinberg-Cochran-Guinan-Lund (SCGL) flow stress model.
  3. the Nadal and LePoac (NP) shear modulus model[12] that usesLindemann theory to determine the temperature dependence and the SCG model for pressure dependence of the shear modulus.

Varshni-Chen-Gray model

[edit]

The Varshni-Chen-Gray model (sometimes referred to as the Varshni equation) has the form:

μ(T)=μ0Dexp(T0/T)1{\displaystyle \mu (T)=\mu _{0}-{\frac {D}{\exp(T_{0}/T)-1}}}

whereμ0{\displaystyle \mu _{0}} is the shear modulus atT=0K{\displaystyle T=0K}, andD{\displaystyle D} andT0{\displaystyle T_{0}} are material constants.

SCG model

[edit]

The Steinberg-Cochran-Guinan (SCG) shear modulus model is pressure dependent and has the form

μ(p,T)=μ0+μppη13+μT(T300);η:=ρρ0{\displaystyle \mu (p,T)=\mu _{0}+{\frac {\partial \mu }{\partial p}}{\frac {p}{\eta ^{\frac {1}{3}}}}+{\frac {\partial \mu }{\partial T}}(T-300);\quad \eta :={\frac {\rho }{\rho _{0}}}}

where, μ0 is the shear modulus at the reference state (T = 300 K,p = 0, η = 1),p is the pressure, andT is the temperature.

NP model

[edit]

The Nadal-Le Poac (NP) shear modulus model is a modified version of the SCG model. The empirical temperature dependence of the shear modulus in the SCG model is replaced with an equation based onLindemann melting theory. The NP shear modulus model has the form:

μ(p,T)=1J(T^)[(μ0+μppη13)(1T^)+ρCm T];C:=(6π2)233f2{\displaystyle \mu (p,T)={\frac {1}{{\mathcal {J}}\left({\hat {T}}\right)}}\left[\left(\mu _{0}+{\frac {\partial \mu }{\partial p}}{\frac {p}{\eta ^{\frac {1}{3}}}}\right)\left(1-{\hat {T}}\right)+{\frac {\rho }{Cm}}~T\right];\quad C:={\frac {\left(6\pi ^{2}\right)^{\frac {2}{3}}}{3}}f^{2}}

where

J(T^):=1+exp[1+1/ζ1+ζ/(1T^)]forT^:=TTm[0,6+ζ],{\displaystyle {\mathcal {J}}({\hat {T}}):=1+\exp \left[-{\frac {1+1/\zeta }{1+\zeta /\left(1-{\hat {T}}\right)}}\right]\quad {\text{for}}\quad {\hat {T}}:={\frac {T}{T_{m}}}\in [0,6+\zeta ],}

and μ0 is the shear modulus atabsolute zero andambient pressure, ζ is an area,m is theatomic mass, andf is theLindemann constant.

Shear relaxation modulus

[edit]

Theshear relaxation modulusG(t){\displaystyle G(t)} is thetime-dependent generalization of the shear modulus[18]G{\displaystyle G}:

G=limtG(t){\displaystyle G=\lim _{t\to \infty }G(t)}.

See also

[edit]

References

[edit]
  1. ^IUPAC,Compendium of Chemical Terminology, 5th ed. (the "Gold Book") (2025). Online version: (2006–) "shear modulus,G".doi:10.1351/goldbook.S05635
  2. ^McSkimin, H.J.; Andreatch, P. (1972). "Elastic Moduli of Diamond as a Function of Pressure and Temperature".J. Appl. Phys.43 (7):2944–2948.Bibcode:1972JAP....43.2944M.doi:10.1063/1.1661636.
  3. ^abcdeCrandall, Dahl, Lardner (1959).An Introduction to the Mechanics of Solids. Boston: McGraw-Hill.ISBN 0-07-013441-3.{{cite book}}:ISBN / Date incompatibility (help)CS1 maint: multiple names: authors list (link)
  4. ^Rayne, J.A. (1961). "Elastic constants of Iron from 4.2 to 300 ° K".Physical Review.122 (6):1714–1716.Bibcode:1961PhRv..122.1714R.doi:10.1103/PhysRev.122.1714.
  5. ^Material properties
  6. ^Spanos, Pete (2003)."Cure system effect on low temperature dynamic shear modulus of natural rubber".Rubber World.
  7. ^abcdeHoek, Evert, and Jonathan D. Bray. Rock slope engineering. CRC Press, 1981.
  8. ^abcdePariseau, William G. Design analysis in rock mechanics. CRC Press, 2017.
  9. ^[Landau LD, Lifshitz EM.Theory of Elasticity, vol. 7. Course of Theoretical Physics. (2nd Ed) Pergamon: Oxford 1970 p13]
  10. ^Shear modulus calculation of glasses
  11. ^Overton, W.; Gaffney, John (1955). "Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper".Physical Review.98 (4): 969.Bibcode:1955PhRv...98..969O.doi:10.1103/PhysRev.98.969.
  12. ^abNadal, Marie-Hélène; Le Poac, Philippe (2003). "Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: Analysis and ultrasonic validation".Journal of Applied Physics.93 (5): 2472.Bibcode:2003JAP....93.2472N.doi:10.1063/1.1539913.
  13. ^March, N. H., (1996),Electron Correlation in Molecules and Condensed Phases, Springer,ISBN 0-306-44844-0 p. 363
  14. ^Varshni, Y. (1970). "Temperature Dependence of the Elastic Constants".Physical Review B.2 (10):3952–3958.Bibcode:1970PhRvB...2.3952V.doi:10.1103/PhysRevB.2.3952.
  15. ^Chen, Shuh Rong; Gray, George T. (1996)."Constitutive behavior of tantalum and tantalum-tungsten alloys".Metallurgical and Materials Transactions A.27 (10): 2994.Bibcode:1996MMTA...27.2994C.doi:10.1007/BF02663849.S2CID 136695336.
  16. ^Goto, D. M.; Garrett, R. K.; Bingert, J. F.; Chen, S. R.; Gray, G. T. (2000)."The mechanical threshold stress constitutive-strength model description of HY-100 steel"(PDF).Metallurgical and Materials Transactions A.31 (8):1985–1996.Bibcode:2000MMTA...31.1985G.doi:10.1007/s11661-000-0226-8.S2CID 136118687.Archived from the original on September 25, 2017.
  17. ^Guinan, M; Steinberg, D (1974). "Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements".Journal of Physics and Chemistry of Solids.35 (11): 1501.Bibcode:1974JPCS...35.1501G.doi:10.1016/S0022-3697(74)80278-7.
  18. ^Rubinstein, Michael, 1956 December 20- (2003).Polymer physics. Colby, Ralph H. Oxford: Oxford University Press. p. 284.ISBN 019852059X.OCLC 50339757.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
Elastic moduli for homogeneousisotropic materials
Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
3D formulaeK={\displaystyle K=\,}E={\displaystyle E=\,}λ={\displaystyle \lambda =\,}G={\displaystyle G=\,}ν={\displaystyle \nu =\,}M={\displaystyle M=\,}Notes
(K,E){\displaystyle (K,\,E)}3K(3KE)9KE{\displaystyle {\tfrac {3K(3K-E)}{9K-E}}}3KE9KE{\displaystyle {\tfrac {3KE}{9K-E}}}3KE6K{\displaystyle {\tfrac {3K-E}{6K}}}3K(3K+E)9KE{\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}
(K,λ){\displaystyle (K,\,\lambda )}9K(Kλ)3Kλ{\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}}3(Kλ)2{\displaystyle {\tfrac {3(K-\lambda )}{2}}}λ3Kλ{\displaystyle {\tfrac {\lambda }{3K-\lambda }}}3K2λ{\displaystyle 3K-2\lambda \,}
(K,G){\displaystyle (K,\,G)}9KG3K+G{\displaystyle {\tfrac {9KG}{3K+G}}}K2G3{\displaystyle K-{\tfrac {2G}{3}}}3K2G2(3K+G){\displaystyle {\tfrac {3K-2G}{2(3K+G)}}}K+4G3{\displaystyle K+{\tfrac {4G}{3}}}
(K,ν){\displaystyle (K,\,\nu )}3K(12ν){\displaystyle 3K(1-2\nu )\,}3Kν1+ν{\displaystyle {\tfrac {3K\nu }{1+\nu }}}3K(12ν)2(1+ν){\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}}3K(1ν)1+ν{\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}
(K,M){\displaystyle (K,\,M)}9K(MK)3K+M{\displaystyle {\tfrac {9K(M-K)}{3K+M}}}3KM2{\displaystyle {\tfrac {3K-M}{2}}}3(MK)4{\displaystyle {\tfrac {3(M-K)}{4}}}3KM3K+M{\displaystyle {\tfrac {3K-M}{3K+M}}}
(E,λ){\displaystyle (E,\,\lambda )}E+3λ+R6{\displaystyle {\tfrac {E+3\lambda +R}{6}}}E3λ+R4{\displaystyle {\tfrac {E-3\lambda +R}{4}}}2λE+λ+R{\displaystyle {\tfrac {2\lambda }{E+\lambda +R}}}Eλ+R2{\displaystyle {\tfrac {E-\lambda +R}{2}}}R=E2+9λ2+2Eλ{\displaystyle R={\sqrt {E^{2}+9\lambda ^{2}+2E\lambda }}}
(E,G){\displaystyle (E,\,G)}EG3(3GE){\displaystyle {\tfrac {EG}{3(3G-E)}}}G(E2G)3GE{\displaystyle {\tfrac {G(E-2G)}{3G-E}}}E2G1{\displaystyle {\tfrac {E}{2G}}-1}G(4GE)3GE{\displaystyle {\tfrac {G(4G-E)}{3G-E}}}
(E,ν){\displaystyle (E,\,\nu )}E3(12ν){\displaystyle {\tfrac {E}{3(1-2\nu )}}}Eν(1+ν)(12ν){\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}}E2(1+ν){\displaystyle {\tfrac {E}{2(1+\nu )}}}E(1ν)(1+ν)(12ν){\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}
(E,M){\displaystyle (E,\,M)}3ME+S6{\displaystyle {\tfrac {3M-E+S}{6}}}ME+S4{\displaystyle {\tfrac {M-E+S}{4}}}3M+ES8{\displaystyle {\tfrac {3M+E-S}{8}}}EM+S4M{\displaystyle {\tfrac {E-M+S}{4M}}}S=±E2+9M210EM{\displaystyle S=\pm {\sqrt {E^{2}+9M^{2}-10EM}}}

There are two valid solutions.
The plus sign leads toν0{\displaystyle \nu \geq 0}.

The minus sign leads toν0{\displaystyle \nu \leq 0}.

(λ,G){\displaystyle (\lambda ,\,G)}λ+2G3{\displaystyle \lambda +{\tfrac {2G}{3}}}G(3λ+2G)λ+G{\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}}λ2(λ+G){\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}}λ+2G{\displaystyle \lambda +2G\,}
(λ,ν){\displaystyle (\lambda ,\,\nu )}λ(1+ν)3ν{\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}}λ(1+ν)(12ν)ν{\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}}λ(12ν)2ν{\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}}λ(1ν)ν{\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}}Cannot be used whenν=0λ=0{\displaystyle \nu =0\Leftrightarrow \lambda =0}
(λ,M){\displaystyle (\lambda ,\,M)}M+2λ3{\displaystyle {\tfrac {M+2\lambda }{3}}}(Mλ)(M+2λ)M+λ{\displaystyle {\tfrac {(M-\lambda )(M+2\lambda )}{M+\lambda }}}Mλ2{\displaystyle {\tfrac {M-\lambda }{2}}}λM+λ{\displaystyle {\tfrac {\lambda }{M+\lambda }}}
(G,ν){\displaystyle (G,\,\nu )}2G(1+ν)3(12ν){\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}}2G(1+ν){\displaystyle 2G(1+\nu )\,}2Gν12ν{\displaystyle {\tfrac {2G\nu }{1-2\nu }}}2G(1ν)12ν{\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}
(G,M){\displaystyle (G,\,M)}M4G3{\displaystyle M-{\tfrac {4G}{3}}}G(3M4G)MG{\displaystyle {\tfrac {G(3M-4G)}{M-G}}}M2G{\displaystyle M-2G\,}M2G2M2G{\displaystyle {\tfrac {M-2G}{2M-2G}}}
(ν,M){\displaystyle (\nu ,\,M)}M(1+ν)3(1ν){\displaystyle {\tfrac {M(1+\nu )}{3(1-\nu )}}}M(1+ν)(12ν)1ν{\displaystyle {\tfrac {M(1+\nu )(1-2\nu )}{1-\nu }}}Mν1ν{\displaystyle {\tfrac {M\nu }{1-\nu }}}M(12ν)2(1ν){\displaystyle {\tfrac {M(1-2\nu )}{2(1-\nu )}}}
2D formulaeK2D={\displaystyle K_{\mathrm {2D} }=\,}E2D={\displaystyle E_{\mathrm {2D} }=\,}λ2D={\displaystyle \lambda _{\mathrm {2D} }=\,}G2D={\displaystyle G_{\mathrm {2D} }=\,}ν2D={\displaystyle \nu _{\mathrm {2D} }=\,}M2D={\displaystyle M_{\mathrm {2D} }=\,}Notes
(K2D,E2D){\displaystyle (K_{\mathrm {2D} },\,E_{\mathrm {2D} })}2K2D(2K2DE2D)4K2DE2D{\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}K2DE2D4K2DE2D{\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}2K2DE2D2K2D{\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}}4K2D24K2DE2D{\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
(K2D,λ2D){\displaystyle (K_{\mathrm {2D} },\,\lambda _{\mathrm {2D} })}4K2D(K2Dλ2D)2K2Dλ2D{\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}K2Dλ2D{\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}λ2D2K2Dλ2D{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}2K2Dλ2D{\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}
(K2D,G2D){\displaystyle (K_{\mathrm {2D} },\,G_{\mathrm {2D} })}4K2DG2DK2D+G2D{\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}K2DG2D{\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }}K2DG2DK2D+G2D{\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}K2D+G2D{\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}
(K2D,ν2D){\displaystyle (K_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}2K2D(1ν2D){\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })\,}2K2Dν2D1+ν2D{\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}K2D(1ν2D)1+ν2D{\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}}2K2D1+ν2D{\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}
(E2D,G2D){\displaystyle (E_{\mathrm {2D} },\,G_{\mathrm {2D} })}E2DG2D4G2DE2D{\displaystyle {\tfrac {E_{\mathrm {2D} }G_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}2G2D(E2D2G2D)4G2DE2D{\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}E2D2G2D1{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1}4G2D24G2DE2D{\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
(E2D,ν2D){\displaystyle (E_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}E2D2(1ν2D){\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}}E2Dν2D(1+ν2D)(1ν2D){\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}E2D2(1+ν2D){\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}}E2D(1+ν2D)(1ν2D){\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}
(λ2D,G2D){\displaystyle (\lambda _{\mathrm {2D} },\,G_{\mathrm {2D} })}λ2D+G2D{\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }}4G2D(λ2D+G2D)λ2D+2G2D{\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}λ2Dλ2D+2G2D{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}λ2D+2G2D{\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }\,}
(λ2D,ν2D){\displaystyle (\lambda _{\mathrm {2D} },\,\nu _{\mathrm {2D} })}λ2D(1+ν2D)2ν2D{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}λ2D(1+ν2D)(1ν2D)ν2D{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}}λ2D(1ν2D)2ν2D{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}λ2Dν2D{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}}Cannot be used whenν2D=0λ2D=0{\displaystyle \nu _{\mathrm {2D} }=0\Leftrightarrow \lambda _{\mathrm {2D} }=0}
(G2D,ν2D){\displaystyle (G_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}G2D(1+ν2D)1ν2D{\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}}2G2D(1+ν2D){\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,}2G2Dν2D1ν2D{\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}2G2D1ν2D{\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}
(G2D,M2D){\displaystyle (G_{\mathrm {2D} },\,M_{\mathrm {2D} })}M2DG2D{\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }}4G2D(M2DG2D)M2D{\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}}M2D2G2D{\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }\,}M2D2G2DM2D{\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}



Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Shear_modulus&oldid=1323694376"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp