Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Serotonin 5-HT2A receptor agonist

From Wikipedia, the free encyclopedia
Drug class
Serotonin 5-HT2A receptor agonist
Drug class
Psilocybin, a well-known non-selective agonist of the serotonin 5-HT2A receptor and other serotonin receptors and aserotonergic psychedelic.
Class identifiers
Synonyms5-HT2A agonist
UseHallucinogenic effects, treatment ofpsychiatric and otherdisorders
Mechanism of actionSerotonin5-HT2A receptoragonism
Biological targetSerotonin5-HT2A receptor
Chemical classTryptamines,phenethylamines,ergolines,lysergamides, others
Legal status
In Wikidata

Aserotonin 5-HT2A receptor agonist, or simply5-HT2A agonist, is adrug which acts as anagonist of theserotonin5-HT2A receptor.[1][2] The serotonin 5-HT2A receptor is one of 13 known humanserotonin receptors.[3] Serotonin 5-HT2A receptor agonists can be divided into two main groups: (1)serotonergic psychedelics such asLSD,psilocybin, andmescaline; and (2) non-hallucinogenic serotonin 5-HT2A receptor agonists such aslisuride,Ariadne,tabernanthalog, andzalsupindole, among others.[1][4] Psychedelic and non-hallucinogenic serotonin 5-HT2A receptor agonists can be reliably distinguished from each other inscientific research using thehead-twitch responseassay in animals.[5][4][6]

Agonists of the serotonin 5-HT2A receptor are generally notselective for thisreceptor and also interact with other serotonin receptors, such as the serotonin5-HT1A,5-HT2B, and/or5-HT2C receptors, among others.[7][8] However, highly selective serotonin 5-HT2A receptor agonists, such asTGF-8027, have also been developed.[9] In addition to degree of selectivity for the serotonin 5-HT2A receptor, the serotonin 5-HT2A receptor activates a variety of different downstreamsignaling pathways, such asG protein andβ-arrestin cascades, and serotonin 5-HT2A receptor agonists can have varyingefficacies for activating these pathways, in turn resulting in different effects.[10][11][12][8] Differing efficacies at different downstream signaling pathways relative to serotonin is also known asfunctional selectivity orbiased agonism.[10][11]

Serotonin 5-HT2A receptor agonists are frequentlyanalogues of theneurotransmitter serotonin, and includetryptamines,phenethylamines, andergolines andlysergamides, among otherchemical classes.[1][13][14]

In addition to therecreational andentheogenic use of serotonergic psychedelics, both psychedelic and non-hallucinogenic serotonin 5-HT2A receptor agonists, which act aspsychoplastogens and haveantidepressant-like effects in animals, may have applications in the treatment ofpsychiatric disorders such asdepression,anxiety, andaddiction.[15][16] However, use of psychedelics for such purposes has also been critiqued and their potentialadverse effects highlighted.[17][18][19]

Serotonergic psychedelics

[edit]
Main articles:Psychedelic drug andSerotonin § Psychedelics

Serotonergic psychedelics, also known as hallucinogenic serotonin 5-HT2A receptor agonists, producehallucinogenic effects includingopen-eye andclosed-eyepsychedelic visuals, otherperceptual changes,synesthesia,time dilation,ego loss,emotional changes, andmystical experiences, among others.[20][21][22][23][24] Examples of serotonergic psychedelics include the following:[1][13]

It is thought that a certain minimum level ofactivationalefficacy at theGq pathway of the serotonin 5-HT2A receptor may be required for psychedelic effects.[10][11][12] However, more research is needed, and a role of other pathways, such as theβ-arrestin pathway, has not been ruled out.[10][14]

Non-hallucinogenic 5-HT2A receptor agonists

[edit]
See also:Psychoplastogen andHead-twitch response § Non-hallucinogenic serotonin 5-HT2A receptor agonists

Non-hallucinogenic serotonin 5-HT2A receptor agonists, which have sometimes been referred to as "non-hallucinogenic psychedelics", are a class of drugs which act asagonists of the serotonin 5-HT2A receptor and produce effects mediated by this receptor such asneuroplastic and behavioral changes but do not producepsychedelic effects.[1][4][16][25][26] This class of drugs includes the following compounds:[1][4][16][25][27]

However, most of the above-listed drugs have been concluded to be non-hallucinogenic based on animal behavioral measures of psychedelic-like effects such as thehead-twitch response (HTR)assay in rodents. Many of these drugs have not been tested in humans and their putatively non-hallucinogenic natures have not been confirmed. Although available evidence is limited, some observations suggest that hallucinogenic effects may emerge at higher doses in some cases. For instance, whiletabernanthalog has been reported to be non-hallucinogenic based onpreclinical research,anecdotal reports suggest that it can produce mild hallucinogenic effects at sufficiently high doses in humans.[28][29][30] Additionally,hallucinations have been observed in humans with high doses oflisuride, which is an often-cited non-hallucinogenic serotonin 5-HT2A receptor agonist related to LSD, although the nature and mechanisms of these apparent hallucinogenic effects are unclear anddopamineD2 receptor agonism might alternatively be involved.[31] Another drug,JRT, is theisoindoleanalogue of LSD and has reduced or possibly absent psychedelic-like effects in animals.[32][33]

The precisemechanism by which non-hallucinogenic serotonin 5-HT2A receptor agonists lack psychedelic effects is uncertain; it is thought that they may not activate the serotonin 5-HT2A receptor with sufficientefficacy, possibly specifically with regard to theGq pathway, to produce hallucinogenic effects.[11] However, many of these drugs have nonetheless been found to producepsychoplastogenic effects mediated by serotonin 5-HT2A receptor activation and to an equivalent extent as with psychedelics.[34][35][36][37] This might be involved in theantidepressant-like effects of these drugs per animal studies, and non-hallucinogenic serotonin 5-HT2A receptor agonists may have therapeutic potential similarly to psychedelics.[37][38][39][40][41]

Inpreclinical models, animals administered non-hallucinogenic serotonin 5-HT2A receptor agonists exhibit fewer hallucinogen-associated behaviors at doses that produce rapid antidepressant-like effects.[42][28] The psychoplastogenic effects of non-hallucinogenic serotonin 5-HT2A receptor agonists appear to coincide with their rapid antidepressant-like effects inanimal models.[41] It has been suggested that non-hallucinogenic serotonin 5-HT2A receptor agonists may be more suitable for broader clinical use compared to psychedelics because of their reduced perception-altering effects.[43]

Selective 5-HT2A receptor agonists

[edit]

Selective serotonin 5-HT2A receptor agonists are known and include25CN-NBOH,BMB-202,DMBMPP,DOI-NBOMe,LPH-5,LPH-48, andTGF-8027.[1][44][45][9][27]

Biased 5-HT2A receptor agonists

[edit]

The serotonin 5-HT2A receptor is coupled to multiple downstreamsignaling pathways.[11][46][10][14] A number ofbiased agonists of the serotonin 5-HT2A receptor are known.[46][11] These include theG protein-biasedlisuride,[47](R)-69,[48] and(R)-70;[48] theβ-arrestin-biasedLSD,[47]RS130-180,[49]25CN-NBOH andderivatives,[46][50]25N-N1-Nap,[12]25N-NBPh,[12]IHCH-7079,[42] andIHCH-7086;[42] and others likeDOI-NBOMe,[27]TCB-2 (2CBCB),[51][52] and5-phenoxytryptamine (OVT2).[46][53] Thefunctional selectivity of variousserotonergic psychedelics at the serotonin 5-HT2A receptor has been studied.[54][55][56][57] Besides the serotonin 5-HT2A receptor, many psychedelics are biased agonists of the serotonin5-HT2C receptor.[58]

Peripherally selective 5-HT2A receptor agonists

[edit]
See also:Serotonin 5-HT2A receptor § Peripherally selective agonists, andPeripherally selective drug § List of peripherally selective drugs

Peripherally selective serotonin 5-HT2A receptor agonists that lack effects on thebrain are known.[1][59][31] Aside fromserotonin itself,[24]α-methylserotonin,[24][60] and the partially peripherally selectivebufotenin (N,N-dimethylserotonin),[59][14][61] another notable example of a peripherally selective serotonin 5-HT2A receptor agonist isAL-34662.[62][63] This drug was investigated for the potential treatment ofeye diseases such asocular hypertension andglaucoma.[62][63]Ergotamine may also be a peripherally selective serotonin 5-HT2A receptor agonist, and is used as anobstetric drug andantimigraine agent.[31][64]Psilocybin andpsilocinanalogues found inpsilocybin-containing mushrooms, includingbaeocystin,norpsilocin,aeruginascin, and4-HO-TMT, have been found to be peripherally selective serotonin 5-HT2A receptor agonists as well.[65][66][67][68]

Selected effects of 5-HT2A receptor agonists

[edit]

Anti-inflammatory 5-HT2A receptor agonists

[edit]
Main article:Serotonin 5-HT2A receptor § Anti-inflammatory effects

Some serotonergic psychedelics, such as(R)-DOI andpsilocybin, show highlypotentanti-inflammatory effects mediated by serotonin 5-HT2A receptor activation.[69][70][71][72][73] Other serotonergic psychedelics, such asLSD, are less potent, and yet other psychedelics, likeDOTFM, show no anti-inflammatory effects at all.[70][73][74] Conversely, some serotonin 5-HT2A receptor agonists, such as2,5-DMA, have potent anti-inflammatory effects with no apparent psychedelic effects.[73][75][74] These findings indicate that the psychedelic and anti-inflammatory effects of serotonin 5-HT2A receptor agonists are mediated by different downstream signaling pathways and are fully dissociable.[73][75][74] Serotonin 5-HT2A receptor agonists with reduced psychedelic potential but retained anti-inflammatory effects, such as2C-iBu (ELE-02), are being studied to treatinflammatory disorders.[76][77][78]

5-HT2A receptor agonists and organ fibrosis

[edit]
See also:Psychedelic microdosing § Long-term toxicity

Many serotonin 5-HT2A receptor agonists, due to lack ofselectivity and activation of the closely related serotonin5-HT2B receptor,[79][8][12] may have the potential to produceorganfibrosis and associated complications such ascardiac valvulopathy orpulmonary hypertension with long-term use.[80][81][82][83] This has been observed withpharmaceutical drugs such asfenfluramine,methysergide,ergotamine,cabergoline, andpergolide, among others, which has led tomarket withdrawal or restrictions on use of such agents.[84][85][86][87][88] Infrequent or occasional use of serotonergic psychedelics is thought to be safe and not pose a significant risk, but very frequent use ormicrodosing may carry risk.[80][82][89] Not all serotonin 5-HT2A receptor agonists are alsopotent serotonin 5-HT2B receptor agonists however.[79][8][12] For example, manyphenethylamine psychedelics show substantialselectivity for the serotonin 5-HT2A and5-HT2C receptors over the serotonin 5-HT2B receptor.[79][8][12] In addition, selective serotonin 5-HT2A receptor agonists that show less or no activation of otherserotonin receptors such as the serotonin 5-HT2B receptor, such as25CN-NBOH,DMBMPP,LPH-5, andTGF-8027, have been developed.[1][90][9] Moreover, selective serotonin 5-HT2B receptorantagonists, includingperipherally selective drugs likeVU0530244, are being developed, and may be able to block the complications of serotonin 5-HT2B receptor agonism.[86][91][92][93][94]

5-HT2A receptor agonists and neurotoxicity

[edit]
See also:Psychedelic drug § Neurotoxicity

Serotonin 5-HT2A receptor agonists may produceneurotoxicity, for instanceserotonergic neurotoxicity, at high concentrations or doses.[95][96][97][98] In addition, they may potentiate the serotonergic neurotoxicity ofMDMA.[99][100][101][102]

Indirect 5-HT2A receptor agonists

[edit]
See also:5-HT2A receptor § Serotonin-elevating drugs,Serotonin § Psychedelics, andPsychedelic drug § Mechanism of action

Serotonergic agents that elevate serotonin levels can act as indirect serotonin 5-HT2A receptor agonists.[103][104] Examples of such agents includeserotonin precursors liketryptophan and5-hydroxytryptophan (5-HTP),serotonin reuptake inhibitors (SRIs) likeselective serotonin reuptake inhibitors (SSRIs) and various otherantidepressants,monoamine oxidase inhibitors (MAOIs), andserotonin releasing agents (SRAs) likefenfluramine andMDMA.[103][104][105][106][107][108][109][110] Direct serotonin 5-HT2A receptor agonists and serotonin-elevating drugs have differing effects.[36] As an example, whereas serotonin-elevating drugs have a risk ofserotonin syndrome, major serotonergic psychedelics likepsilocybin andLSD arepartial agonists of the serotonin 5-HT2A receptor and have little or no risk of serotonin syndrome even in the context of largeoverdoses.[111][112][113] However, one notable group of psychedelics, theNBOMe drugs, have higherefficacy at the serotonin 5-HT2A receptor and can produce serotonin syndrome.[112] As another example, serotonin is a highlyhydrophilicmolecule and is unable to enterneurons and activateintracellular serotonin 5-HT2A receptors, which have been found to mediate the psychoplastogenic effects ofexogenous serotonin 5-HT2A receptor agonists.[114][36][115] These intracellular serotonin 5-HT2A receptors may also contribute to the psychedelic effects of serotonin 5-HT2A receptor agonists.[36]

See also

[edit]

References

[edit]
  1. ^abcdefghiDuan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants".Chem Rev.124 (1):124–163.doi:10.1021/acs.chemrev.3c00375.PMID 38033123.
  2. ^Kwan AC, Olson DE, Preller KH, Roth BL (November 2022)."The neural basis of psychedelic action".Nat Neurosci.25 (11):1407–1419.doi:10.1038/s41593-022-01177-4.PMC 9641582.PMID 36280799.
  3. ^Nichols DE, Nichols CD (May 2008). "Serotonin receptors".Chem Rev.108 (5):1614–1641.doi:10.1021/cr078224o.PMID 18476671.
  4. ^abcdSharp T, Ippolito A (May 2025)."Neuropsychopharmacology of hallucinogenic and non-hallucinogenic 5-HT2A receptor agonists".Br J Pharmacol bph.70050.doi:10.1111/bph.70050.PMID 40405723.
  5. ^Halberstadt AL, Geyer MA (2018). "Effect of Hallucinogens on Unconditioned Behavior".Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 159–199.doi:10.1007/7854_2016_466.ISBN 978-3-662-55878-2.PMC 5787039.PMID 28224459.
  6. ^Alexander L, Anderson D, Baxter L, Claydon M, Rucker J, Robinson ES (October 2024)."Preclinical models for evaluating psychedelics in the treatment of major depressive disorder".Br J Pharmacol bph.17370.doi:10.1111/bph.17370.PMID 39467003.
  7. ^Cameron LP, Benetatos J, Lewis V, Bonniwell EM, Jaster AM, Moliner R, Castrén E, McCorvy JD, Palner M, Aguilar-Valles A (November 2023)."Beyond the 5-HT2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action".J Neurosci.43 (45):7472–7482.doi:10.1523/JNEUROSCI.1384-23.2023.PMC 10634557.PMID 37940583.
  8. ^abcdeJain MK, Gumpper RH, Slocum ST, Schmitz GP, Madsen JS, Tummino TA, Suomivuori CM, Huang XP, Shub L, DiBerto JF, Kim K, DeLeon C, Krumm BE, Fay JF, Keiser M, Hauser AS, Dror RO, Shoichet B, Gloriam DE, Nichols DE, Roth BL (October 2025). "The polypharmacology of psychedelics reveals multiple targets for potential therapeutics".Neuron.113 (19): 3129–3142.e9.doi:10.1016/j.neuron.2025.06.012.PMID 40683247.
  9. ^abcFenske TG, McKee JL, Cavalco NG, Schalk SS, Bonniwell EM, Lammers JC, Shacham N, Cuccurazzu B, Halberstadt AL, McCorvy JD (September 2025)."Discovery of Highly Selective 5-HT2A Agonists Using Structure-Guided Design".J Med Chem.68 (19) acs.jmedchem.5c01855.doi:10.1021/acs.jmedchem.5c01855.PMC 12713736.PMID 40997862.
  10. ^abcdeCummins BR, Billac GB, Nichols DE, Nichols CD (July 2025)."5-HT2A receptors: Pharmacology and functional selectivity".Pharmacol Rev.77 (4) 100059.doi:10.1016/j.pharmr.2025.100059.PMC 12405928.PMID 40418878.
  11. ^abcdefWacker D, McCorvy JD (August 2025)."Biased Signaling in Psychedelic Action".Annu Rev Pharmacol Toxicol.doi:10.1146/annurev-pharmtox-062124-012545.PMID 40796124.
  12. ^abcdefgWallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD (December 2023)."Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential".Nat Commun.14 (1) 8221.doi:10.1038/s41467-023-44016-1.PMC 10724237.PMID 38102107.
  13. ^abNichols DE (2018). "Chemistry and Structure–Activity Relationships of Psychedelics".Behavioral Neurobiology of Psychedelic Drugs. Curr Top Behav Neurosci. Vol. 36. pp. 1–43.doi:10.1007/7854_2017_475.ISBN 978-3-662-55878-2.PMID 28401524.{{cite book}}:|journal= ignored (help)
  14. ^abcdGumpper RH, Nichols DE (October 2024). "Chemistry/structural biology of psychedelic drugs and their receptor(s)".Br J Pharmacol bph.17361.doi:10.1111/bph.17361.PMID 39354889.
  15. ^McClure-Begley TD, Roth BL (June 2022). "The promises and perils of psychedelic pharmacology for psychiatry".Nat Rev Drug Discov.21 (6):463–473.doi:10.1038/s41573-022-00421-7.PMID 35301459.
  16. ^abcAtiq MA, Baker MR, Voort JL, Vargas MV, Choi DS (July 2025)."Disentangling the acute subjective effects of classic psychedelics from their enduring therapeutic properties".Psychopharmacology (Berl).242 (7):1481–1506.doi:10.1007/s00213-024-06599-5.PMC 12226698.PMID 38743110.
  17. ^Moncrieff, Joanna (16 January 2025). "Alternative Approaches: The Good, the Bad and the Worrying: Psychedelics for Depression".Chemically Imbalanced: The Making and Unmaking of the Serotonin Myth. Flint.ISBN 978-1-80399-680-6. Retrieved16 October 2025.
  18. ^Pagano, Louis A.; Pagano, Timothy P. (4 September 2025)."Evaluating Psychedelics and Psychedelic Assisted Psychotherapies for Veterans Amidst Enthusiasm and Advertising Hype".Current Treatment Options in Psychiatry.12 (1) 31.doi:10.1007/s40501-025-00367-8.ISSN 2196-3061. Retrieved18 October 2025.
  19. ^Hager, Sandy Brian (8 September 2025)."The shifting fortunes of corporate psychedelia"(PDF).Finance and Society:1–23.doi:10.1017/fas.2025.10014.ISSN 2059-5999.
  20. ^Swanson LR (2018)."Unifying Theories of Psychedelic Drug Effects".Front Pharmacol.9 172.doi:10.3389/fphar.2018.00172.PMC 5853825.PMID 29568270.
  21. ^Amezquita, Joseph (2020)."Psychonautica: Rhetorical Patterns Within Self-Reported Psychedelic Narratives". University of North Carolina at Charlotte. Retrieved18 October 2025.
  22. ^Al-Imam A, Lora R, Motyka MA, Marletta E, Vezzaro M, Moczko J, Younus M, Michalak M (May 2025). "Opinion Mining of Erowid's Experience Reports on LSD and Psilocybin-Containing Mushrooms".Drug Saf.48 (5):559–575.doi:10.1007/s40264-025-01530-z.PMID 40032797.
  23. ^Shulgin, Alexander;Shulgin, Ann (September 1991).PiHKAL: A Chemical Love Story. Berkeley, California: Transform Press.ISBN 0-9630096-0-5.OCLC 25627628.
  24. ^abcShulgin, Alexander;Shulgin, Ann (September 1997).TiHKAL: The Continuation.Berkeley, California:Transform Press.ISBN 0-9630096-9-9.OCLC 38503252.
  25. ^abGibbs, Alan; Khan, Tanweer (2025). "Psychedelics-Inspired Drug Discovery".Trends in CNS Drug Discovery. Wiley. pp. 67–89.doi:10.1002/9783527844678.ch3.ISBN 978-3-527-35280-7. Retrieved18 October 2025.
  26. ^Chen, Margery J. Q.; Chen-Li, David; Chisamore, Noah; Husain, M. Ishrat; Di Vincenzo, Joshua D.; Mansur, Rodrigo B.; Phan, Lee; Johnson, Danica; McIntyre, Roger S.; Rosenblat, Joshua D. (2025-07-01)."Non-hallucinogenic psychedelics for mood and anxiety disorders: A systematic review".Psychiatry Research.349 116532.doi:10.1016/j.psychres.2025.116532.ISSN 0165-1781.
  27. ^abcXu Z, Wang H, Yu J, Deng Y, Tian X, Ni R, Xia F, Yang L, Xu C, Zhang L, Luo R, Chen P, Zhang X, Liu Y, Hou J, Zhang M, Chen S, Su L, Sun H, He Y, Chen D, Chen X, Miao Z, Xie J, Liu X, Zhao J, Ke B, Tian X, Zeng L, Zhang L, Tang X, Yang S, Liu J, Wang X, Yan W, Shao Z (January 2026). "Psychedelics elicit their effects by 5-HT2A receptor-mediated Gi signalling".Nature.doi:10.1038/s41586-025-10061-7.PMID 41606342.
  28. ^abLove, Shayla (20 October 2024)."Tripping on Nothing".The Atlantic. Archived fromthe original on 8 February 2025.
  29. ^Hardman, Josh (19 July 2023)."Non-Hallucinogenic Trip Reports: Searching for the Tabernanthalog Tasters".Psychedelic Alpha. Retrieved14 October 2025.
  30. ^Juliani, Arthur (30 December 2023)."A Phenomenological Report on the Novel Non-Hallucinogenic Psychedelic Tabernanthalog".Medium. Archived from the original on 14 October 2025. Retrieved14 October 2025.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  31. ^abcKehler J, Lindskov MS (May 2025). "Are the LSD-analogs lisuride and ergotamine examples of non-hallucinogenic serotonin 5-HT2A receptor agonists?".Journal of Psychopharmacology.39 (9):889–895.doi:10.1177/02698811251330741.PMID 40322975.
  32. ^Tuck JR, Dunlap LE, Khatib YA, Hatzipantelis CJ, Weiser Novak S, Rahn RM, Davis AR, Mosswood A, Vernier AM, Fenton EM, Aarrestad IK, Tombari RJ, Carter SJ, Deane Z, Wang Y, Sheridan A, Gonzalez MA, Avanes AA, Powell NA, Chytil M, Engel S, Fettinger JC, Jenkins AR, Carlezon WA, Nord AS, Kangas BD, Rasmussen K, Liston C, Manor U, Olson DE (April 2025)."Molecular design of a therapeutic LSD analogue with reduced hallucinogenic potential".Proceedings of the National Academy of Sciences of the United States of America.122 (16) e2416106122.Bibcode:2025PNAS..12216106T.doi:10.1073/pnas.2416106122.PMC 12037037.PMID 40228113.
  33. ^Dunlap L (2022). "Chapter 5. An Analog of LSD With Antipsychotic Potential".Development of Non-Hallucinogenic Psychoplastogens(PDF) (Ph.D. thesis). University of California, Davis. pp. 105–114.
  34. ^Hatzipantelis CJ, Olson DE (February 2024)."The Effects of Psychedelics on Neuronal Physiology".Annu Rev Physiol.86:27–47.doi:10.1146/annurev-physiol-042022-020923.PMC 10922499.PMID 37931171.
  35. ^Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, Burbach KF, Soltanzadeh Zarandi S, Sood A, Paddy MR, Duim WC, Dennis MY, McAllister AK, Ori-McKenney KM, Gray JA, Olson DE (June 2018)."Psychedelics Promote Structural and Functional Neural Plasticity".Cell Rep.23 (11):3170–3182.doi:10.1016/j.celrep.2018.05.022.PMC 6082376.PMID 29898390.
  36. ^abcdVargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, Cameron LP, Patel SD, Hennessey JJ, Saeger HN, McCorvy JD, Gray JA, Tian L, Olson DE (February 2023)."Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors".Science.379 (6633):700–706.Bibcode:2023Sci...379..700V.doi:10.1126/science.adf0435.PMC 10108900.PMID 36795823.
  37. ^abAgnorelli C, Spriggs M, Godfrey K, Sawicka G, Bohl B, Douglass H, Fagiolini A, Parastoo H, Carhart-Harris R, Nutt D, Erritzoe D (May 2025)."Neuroplasticity and psychedelics: A comprehensive examination of classic and non-classic compounds in pre and clinical models".Neurosci Biobehav Rev.172 106132.doi:10.1016/j.neubiorev.2025.106132.PMID 40185376.
  38. ^Drewko AJ, Habets RL, Brunt TM (August 2025). "Above the threshold, beyond the trip: the role of the 5-HT2A receptor in psychedelic-induced neuroplasticity and antidepressant effects".Mol Psychiatry.30 (12):5926–5937.doi:10.1038/s41380-025-03169-9.PMID 40849544.
  39. ^Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE (2021)."Psychedelics and Other Psychoplastogens for Treating Mental Illness".Front Psychiatry.12 727117.doi:10.3389/fpsyt.2021.727117.PMC 8520991.PMID 34671279.
  40. ^Heifets BD, Olson DE (January 2024)."Therapeutic mechanisms of psychedelics and entactogens".Neuropsychopharmacology.49 (1):104–118.doi:10.1038/s41386-023-01666-5.PMC 10700553.PMID 37488282.
  41. ^abCameron, Lindsay P.; Tombari, Robert J.; Lu, Ju; Pell, Alexander J.; Hurley, Zefan Q.; Ehinger, Yann; Vargas, Maxemiliano V.; McCarroll, Matthew N.; Taylor, Jack C.; Myers-Turnbull, Douglas; Liu, Taohui; Yaghoobi, Bianca; Laskowski, Lauren J.; Anderson, Emilie I.; Zhang, Guoliang (January 2021)."A non-hallucinogenic psychedelic analogue with therapeutic potential".Nature.589 (7842):474–479.Bibcode:2021Natur.589..474C.doi:10.1038/s41586-020-3008-z.ISSN 1476-4687.PMC 7874389.PMID 33299186.
  42. ^abcCao, Dongmei; Yu, Jing; Wang, Huan; Luo, Zhipu; Liu, Xinyu; He, Licong; Qi, Jianzhong; Fan, Luyu; Tang, Lingjie; Chen, Zhangcheng; Li, Jinsong; Cheng, Jianjun; Wang, Sheng (2022-01-28)."Structure-based discovery of nonhallucinogenic psychedelic analogs".Science.375 (6579):403–411.Bibcode:2022Sci...375..403C.doi:10.1126/science.abl8615.PMID 35084960.
  43. ^Yin, Ya-Nan; Gao, Tian-Ming (2023-01-01)."Non-hallucinogenic Psychedelic Analog Design: A Promising Direction for Depression Treatment".Neuroscience Bulletin.39 (1):170–172.doi:10.1007/s12264-022-00933-7.ISSN 1995-8218.PMC 9849505.PMID 35927548.
  44. ^Poulie CB, Jensen AA, Halberstadt AL, Kristensen JL (December 2020)."DARK Classics in Chemical Neuroscience: NBOMes".ACS Chem Neurosci.11 (23):3860–3869.doi:10.1021/acschemneuro.9b00528.PMC 9191638.PMID 31657895.
  45. ^Cameron LP, Jaster AM, Ramos R, Ullman EZ (2025)."The Utility of DOI For the Study of Serotonin 2A and 2C Receptors".Molecular Pharmacology.108 (1) 100093.doi:10.1016/j.molpha.2025.100093.PMID 41447818. Retrieved1 December 2025.
  46. ^abcdJastrzębski MK, Wójcik P, Grudzińska A, Andreozzi G, Vetrò T, Asim A, Mudgal A, Czapiński J, Wróbel TM, Bartuzi D, Targowska-Duda KM, Kaczor AA (September 2025)."Biased signaling via serotonin 5-HT2A receptor: From structural aspects to in vitro and in vivo pharmacology".Acta Pharm Sin B.15 (9):4438–4455.doi:10.1016/j.apsb.2025.07.002.PMC 12491688.PMID 41049744.
  47. ^abPogorelov VM, Rodriguiz RM, Roth BL, Wetsel WC (2023)."The G protein biased serotonin 5-HT2A receptor agonist lisuride exerts anti-depressant drug-like activities in mice".Front Mol Biosci.10 1233743.doi:10.3389/fmolb.2023.1233743.PMC 10603247.PMID 37900918.Recently, it has been demonstrated that LSD is βArr biased at the 5-HT2AR in vitro (Wacker et al., 2013; Wang et al., 2013; Kim et al., 2020) and βArr2 biased in vivo (Rodriguiz et al., 2021). By comparison, our studies with βArr1-KO and βArr2-KO mice indicate lisuride is G protein biased at the 5-HT2AR since deletion of Arrb1 or Arrb2 results in very low incidences of HTRs coincident with WTs--even with the high 4 mg/kg dose.
  48. ^abKaplan AL, Confair DN, Kim K, Barros-Álvarez X, Rodriguiz RM, Yang Y, Kweon OS, Che T, McCorvy JD, Kamber DN, Phelan JP, Martins LC, Pogorelov VM, DiBerto JF, Slocum ST, Huang XP, Kumar JM, Robertson MJ, Panova O, Seven AB, Wetsel AQ, Wetsel WC, Irwin JJ, Skiniotis G, Shoichet BK, Roth BL, Ellman JA (October 2022)."Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity".Nature.610 (7932):582–591.doi:10.1038/s41586-022-05258-z.PMC 9996387.PMID 36171289.
  49. ^Gumpper RH, Jain MK, Kim K, Sun R, Sun N, Xu Z, DiBerto JF, Krumm BE, Kapolka NJ, Kaniskan HÜ, Nichols DE, Jin J, Fay JF, Roth BL (March 2025)."The structural diversity of psychedelic drug actions revealed".Nat Commun.16 (1) 2734.Bibcode:2025NatCo..16.2734G.doi:10.1038/s41467-025-57956-7.PMC 11923220.PMID 40108183.
  50. ^Poulie CB, Pottie E, Simon IA, Harpsøe K, D'Andrea L, Komarov IV, Gloriam DE, Jensen AA, Stove CP, Kristensen JL (September 2022)."Discovery of β-Arrestin-Biased 25CN-NBOH-Derived 5-HT2A Receptor Agonists".J Med Chem.65 (18):12031–12043.doi:10.1021/acs.jmedchem.2c00702.PMC 9511481.PMID 36099411.
  51. ^Di Giovanni G, De Deurwaerdère P (November 2018). "TCB-2 [(7R)-3-bromo-2, 5-dimethoxy-bicyclo[4.2.0]octa-1,3,5-trien-7-yl]methanamine]: A hallucinogenic drug, a selective 5-HT2A receptor pharmacological tool, or none of the above?".Neuropharmacology.142:20–29.doi:10.1016/j.neuropharm.2017.10.004.PMID 28987938.TCB-2 has all the characteristics of a biased agonist (functionally selective agonist) at 5-HT2A receptors. (R)-(-)-TCB-2 displays high selectivity (about 65-fold) toward the PLC signalling pathway over PLA2, one displaying EC50s of 18 ± 2.8 nM and 1180 ± 180, respectively (McLean et al., 2006). The racemic, which is commonly used in pharmacological studies, induced IP3 accumulation with an EC50 of 36 ± 3.6 nM. It corresponded to 94% of the maximal response induced by 5-HT indicating that TCB-2 is a full agonist on this pathway (McLean et al., 2006). It has been also reported that TCB-2 enhances intracellular Ca2+ in line with the increase in IP accumulation in HEK293 cells stably expressing 5 human 5-HT2A receptors (Dalwadi et al., 2016). This confers on TCB-2 a unique pharmacological profile compared to other 5-HT2A receptor ligands such as LSD, DOI, or DOB. While LSD displays a slightly higher potency toward IP accumulation, DOB, DOM, DOI, 5-MeO-DMT, or psilocin have a higher potency at AA release (Kurrasch-Orbaugh et al., 2003b; Moya et al., 2007).
  52. ^Esmaeili AJ, Montazeri P, Gomez JC, Dumervil DJ, Nezhad FS, Steinhardt RC (October 2024)."Photoswitchable TCB-2 for control of the 5-HT2A receptor and analysis of biased agonism".Chem Commun (Camb).60 (83):11956–11959.doi:10.1039/d4cc03892d.PMID 39350732.
  53. ^Kossatz E, Diez-Alarcia R, Gaitonde SA, Ramon-Duaso C, Stepniewski TM, Aranda-Garcia D, Muneta-Arrate I, Tepaz E, Saen-Oon S, Soliva R, Shahraki A, Moreira D, Brea J, Loza MI, de la Torre R, Kolb P, Bouvier M, Meana JJ, Robledo P, Selent J (May 2024)."G protein-specific mechanisms in the serotonin 5-HT2A receptor regulate psychosis-related effects and memory deficits".Nature Communications.15 (1) 4307.Bibcode:2024NatCo..15.4307K.doi:10.1038/s41467-024-48196-2.PMC 11137019.PMID 38811567.
  54. ^Ippolito A, Vasudevan S, Hurley S, Gilmour G, Westhorpe F, Churchill G, Sharp T (June 2025)."Evidence that 5-HT2A receptor signalling efficacy and not biased agonism differentiates serotonergic psychedelic from non-psychedelic drugs".Br J Pharmacol bph.70109.doi:10.1111/bph.70109.PMID 40545270.
  55. ^Pottie E, Dedecker P, Stove CP (December 2020). "Identification of psychedelic new psychoactive substances (NPS) showing biased agonism at the 5-HT2AR through simultaneous use of β-arrestin 2 and miniGαq bioassays".Biochem Pharmacol.182 114251.doi:10.1016/j.bcp.2020.114251.hdl:1854/LU-8687066.PMID 32998000.
  56. ^Pottie E, Poulie CB, Simon IA, Harpsøe K, D'Andrea L, Komarov IV, Gloriam DE, Jensen AA, Kristensen JL, Stove CP (August 2023)."Structure-Activity Assessment and In-Depth Analysis of Biased Agonism in a Set of Phenylalkylamine 5-HT2A Receptor Agonists".ACS Chem Neurosci.14 (15):2727–2742.doi:10.1021/acschemneuro.3c00267.PMC 10401645.PMID 37474114.
  57. ^Nadal-Gratacós N, Puigseslloses P, Guzmán L, Weiss N, Pottie E, Riera-Colomer C, Lardeux V, Thiriet N, Wang FH, Källsten L, Pérez-Esteban I, Ketsela G, Margall J, Berzosa X, Pubill D, Rodríguez-Arias M, Ettcheto M, Kehr J, Stove C, Solinas M, Sitte HH, Escubedo E, López-Arnau R (November 2025)."The psychedelic phenethylamine 25C-NBF, a selective 5-HT2A agonist, shows psychoplastogenic properties and rapid antidepressant effects in male rodents".Mol Psychiatry.doi:10.1038/s41380-025-03341-1.PMID 41238841.
  58. ^Bonniwell EM, Alabdali R, Hennessey JJ, McKee JL, Cavalco NG, Lammers JC, Moore EJ, Franchini L, Orlandi C, McCorvy JD (October 2025)."Serotonin 5-HT2C Receptor Signaling Analysis Reveals Psychedelic Biased Agonism".ACS Chem Neurosci.16 (19):3899–3914.doi:10.1021/acschemneuro.5c00647.PMC 12629614.PMID 40944639.
  59. ^abShen HW, Jiang XL, Winter JC, Yu AM (October 2010)."Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions".Curr Drug Metab.11 (8):659–666.doi:10.2174/138920010794233495.PMC 3028383.PMID 20942780.
  60. ^Chaouloff F, Laude D, Baudrie V (October 1990). "Effects of the 5-HT1C/5-5-HT2 receptor agonists DOI and alpha-methyl-5-HT on plasma glucose and insulin levels in the rat".Eur J Pharmacol.187 (3):435–443.doi:10.1016/0014-2999(90)90370-l.PMID 2127400.
  61. ^Ott J (2001). "Pharmañopo-psychonautics: human intranasal, sublingual, intrarectal, pulmonary and oral pharmacology of bufotenine".J Psychoactive Drugs.33 (3):273–281.doi:10.1080/02791072.2001.10400574.PMID 11718320.
  62. ^abSharif, Najam A; May, Jesse A (2011)."Potential for serotonergic agents to treat elevated intraocular pressure and glaucoma: focus on 5-HT 2 receptor agonists".Expert Review of Ophthalmology.6 (1):105–120.doi:10.1586/eop.10.69.ISSN 1746-9899. Retrieved18 October 2025.
  63. ^abSharif NA, McLaughlin MA, Kelly CR (February 2007). "AL-34662: a potent, selective, and efficacious ocular hypotensive serotonin-2 receptor agonist".J Ocul Pharmacol Ther.23 (1):1–13.doi:10.1089/jop.2006.0093.PMID 17341144.
  64. ^Whealy M, Becker WJ (2024). "The 5-HT1B and 5-HT1D agonists in acute migraine therapy: Ergotamine, dihydroergotamine, and the triptans".Migraine Management. Handbook of Clinical Neurology. Vol. 199. pp. 17–42.doi:10.1016/B978-0-12-823357-3.00008-2.ISBN 978-0-12-823357-3.PMID 38307644.{{cite book}}:|journal= ignored (help)
  65. ^Danda H, Mazochová K, Šíchová K, Mazoch V, Ladislavová LO, Syrová K, Jurásek B, Cihlářová P, Jurok R, Páleníček T, Kuchař M (July 2025). "Behavioural and pharmacological evaluation of the psilocybin analogue baeocystin in Wistar rats".Prog Neuropsychopharmacol Biol Psychiatry.140 111439.doi:10.1016/j.pnpbp.2025.111439.PMID 40619050.
  66. ^Rakoczy RJ, Runge GN, Sen AK, Sandoval O, Wells HG, Nguyen Q, Roberts BR, Sciortino JH, Gibbons WJ, Friedberg LM, Jones JA, McMurray MS (October 2024)."Pharmacological and behavioural effects of tryptamines present in psilocybin-containing mushrooms".Br J Pharmacol.181 (19):3627–3641.doi:10.1111/bph.16466.PMID 38825326.
  67. ^Glatfelter GC, Pottie E, Partilla JS, Sherwood AM, Kaylo K, Pham DN, Naeem M, Sammeta VR, DeBoer S, Golen JA, Hulley EB, Stove CP, Chadeayne AR, Manke DR, Baumann MH (November 2022)."Structure-Activity Relationships for Psilocybin, Baeocystin, Aeruginascin, and Related Analogues to Produce Pharmacological Effects in Mice".ACS Pharmacol Transl Sci.5 (11):1181–1196.doi:10.1021/acsptsci.2c00177.PMC 9667540.PMID 36407948.
  68. ^Chue P, Andreiev A, Bucuci E, Els C, Chue J (2022)."A Review of Aeruginascin and Potential Entourage Effect in Hallucinogenic Mushrooms".European Psychiatry.65 (S1). Royal College of Psychiatrists: S885.doi:10.1192/j.eurpsy.2022.2297.ISSN 0924-9338.PMC 9568164.
  69. ^Nichols DE, Johnson MW, Nichols CD (February 2017). "Psychedelics as Medicines: An Emerging New Paradigm".Clin Pharmacol Ther.101 (2):209–219.doi:10.1002/cpt.557.PMID 28019026.
  70. ^abFlanagan TW, Nichols CD (2022). "Psychedelics and Anti-inflammatory Activity in Animal Models".Disruptive Psychopharmacology. Current Topics in Behavioral Neurosciences. Vol. 56. pp. 229–245.doi:10.1007/7854_2022_367.ISBN 978-3-031-12183-8.PMID 35546383.
  71. ^Nichols CD (November 2022)."Psychedelics as potent anti-inflammatory therapeutics".Neuropharmacology.219 109232.doi:10.1016/j.neuropharm.2022.109232.PMID 36007854.
  72. ^Flanagan TW, Nichols CD (August 2018)."Psychedelics as anti-inflammatory agents"(PDF).Int Rev Psychiatry.30 (4):363–375.doi:10.1080/09540261.2018.1481827.PMID 30102081.
  73. ^abcdFlanagan TW, Billac GB, Landry AN, Sebastian MN, Cormier SA, Nichols CD (April 2021)."Structure-Activity Relationship Analysis of Psychedelics in a Rat Model of Asthma Reveals the Anti-Inflammatory Pharmacophore".ACS Pharmacol Transl Sci.4 (2):488–502.doi:10.1021/acsptsci.0c00063.PMC 8033619.PMID 33860179.
  74. ^abcFlanagan TW, Foster TP, Galbato TE, Lum PY, Louie B, Song G, Halberstadt AL, Billac GB, Nichols CD (February 2024)."Serotonin-2 Receptor Agonists Produce Anti-inflammatory Effects through Functionally Selective Mechanisms That Involve the Suppression of Disease-Induced Arginase 1 Expression".ACS Pharmacology & Translational Science.7 (2):478–492.doi:10.1021/acsptsci.3c00297.PMC 10863441.PMID 38357283.The effects of (R)-DOTFM were examined in the head-twitch response (HTR) assay. (R)-DOTFM produced a strong HTR with a potent ED 50 of 0.60 μmol/kg. These values are equivalent to (R)-DOI, as previously determined.
  75. ^abFlanagan TW, Billac G, Nichols CD (2022)."Differential Regulation of Inflammatory Responses Following 5-HT 2 Receptor Activation in Pulmonary Tissues".The FASEB Journal.36 (S1) fasebj.2022.36.S1.R2617.doi:10.1096/fasebj.2022.36.S1.R2617.ISSN 0892-6638.
  76. ^Newvine C (8 July 2020)."Eleusis Draws on Research Into Psychedelics To Develop New Medicines for Inflammation".Lucid News - Psychedelics, Consciousness Technology, and the Future of Wellness. Retrieved16 February 2025.
  77. ^Shlomi Raz, Eleusis (February 2020).Eleusis Drug Development Overview. LSX World Congress 2020.
  78. ^WO published 2020210823, Charles D. Nichols; Gerald Billac &David E. Nichols, "Compounds and methods for treating inflammatory disorders", published 15 October 2020 
  79. ^abcLuethi, Dino; Liechti, Matthias E. (2021)."Drugs of Abuse Affecting 5-HT2B Receptors".5-HT2B Receptors. Vol. 35. Cham: Springer International Publishing. pp. 277–289.doi:10.1007/978-3-030-55920-5_16.ISBN 978-3-030-55919-9. Retrieved27 April 2025.
  80. ^abTagen M, Mantuani D, van Heerden L, Holstein A, Klumpers LE, Knowles R (September 2023). "The risk of chronic psychedelic and MDMA microdosing for valvular heart disease".J Psychopharmacol.37 (9):876–890.doi:10.1177/02698811231190865.PMID 37572027.
  81. ^Wsół A (December 2023)."Cardiovascular safety of psychedelic medicine: current status and future directions".Pharmacol Rep.75 (6):1362–1380.doi:10.1007/s43440-023-00539-4.PMC 10661823.PMID 37874530.
  82. ^abRouaud A, Calder AE, Hasler G (March 2024)."Microdosing psychedelics and the risk of cardiac fibrosis and valvulopathy: Comparison to known cardiotoxins".J Psychopharmacol.38 (3):217–224.doi:10.1177/02698811231225609.PMC 10944580.PMID 38214279.
  83. ^McIntyre RS (2023). "Serotonin 5-HT2B receptor agonism and valvular heart disease: implications for the development of psilocybin and related agents".Expert Opin Drug Saf.22 (10):881–883.doi:10.1080/14740338.2023.2248883.PMID 37581427.
  84. ^Elangbam CS (October 2010). "Drug-induced valvulopathy: an update".Toxicol Pathol.38 (6):837–848.doi:10.1177/0192623310378027.PMID 20716786.
  85. ^Hutcheson JD, Setola V, Roth BL, Merryman WD (November 2011)."Serotonin receptors and heart valve disease--it was meant 2B".Pharmacol Ther.132 (2):146–157.doi:10.1016/j.pharmthera.2011.03.008.PMC 3179857.PMID 21440001.
  86. ^abBender AM, Parr LC, Livingston WB, Lindsley CW, Merryman WD (August 2023)."2B Determined: The Future of the Serotonin Receptor 2B in Drug Discovery".J Med Chem.66 (16):11027–11039.doi:10.1021/acs.jmedchem.3c01178.PMC 11073569.PMID 37584406.
  87. ^Rothman RB, Baumann MH (May 2009)."Serotonergic drugs and valvular heart disease".Expert Opin Drug Saf.8 (3):317–329.doi:10.1517/14740330902931524.PMC 2695569.PMID 19505264.
  88. ^Huang XP, Setola V, Yadav PN, Allen JA, Rogan SC, Hanson BJ, Revankar C, Robers M, Doucette C, Roth BL (October 2009)."Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment".Mol Pharmacol.76 (4):710–722.doi:10.1124/mol.109.058057.PMC 2769050.PMID 19570945.
  89. ^Roihuvuo, Elias (31 January 2022)."Classical psychedelics and NBOMes as serotonin 2B receptor agonists: Valvulopathogenic signaling pathways and cardiac safety concerns". Itä-Suomen yliopisto. Retrieved27 April 2025.
  90. ^Peplow, Mark (2024). "Next-generation psychedelics: should new agents skip the trip?".Nature Biotechnology.42 (6):827–830.doi:10.1038/s41587-024-02285-1.ISSN 1087-0156.PMID 38831049.Another problem is that some classical psychedelics are also agonists of the 5-HT2B receptor, which is expressed in heart tissue and can cause long-term cardiac problems. Kristensen's company Lophora aims to solve that with its lead compound LPH-5, a phenylethylamine derivative with an extra molecular ring that makes it less flexible. LPH-5 has a 60-fold higher selectivity for 5-HT2A over 5-HT2B.
  91. ^Padhariya K, Bhandare R, Canney D, Velingkar V (2017). "Cardiovascular Concern of 5-HT2B Receptor and Recent Vistas in the Development of Its Antagonists".Cardiovasc Hematol Disord Drug Targets.17 (2):86–104.doi:10.2174/1871529X17666170703115111.PMID 28676029.
  92. ^Löfdahl A, Tornling G, Wigén J, Larsson-Callerfelt AK, Wenglén C, Westergren-Thorsson G (December 2020)."Pathological Insight into 5-HT2B Receptor Activation in Fibrosing Interstitial Lung Diseases".Int J Mol Sci.22 (1): 225.doi:10.3390/ijms22010225.PMC 7796180.PMID 33379351.
  93. ^Dini G, Di Cara G, Ferrara P, Striano P, Verrotti A (2023)."Reintroducing Fenfluramine as a Treatment for Seizures: Current Knowledge, Recommendations and Gaps in Understanding".Neuropsychiatric Disease and Treatment.19:2013–2025.doi:10.2147/NDT.S417676.PMC 10543412.PMID 37790801.
  94. ^Ayme-Dietrich E, Lawson R, Côté F, de Tapia C, Da Silva S, Ebel C, Hechler B, Gachet C, Guyonnet J, Rouillard H, Stoltz J, Quentin E, Banas S, Daubeuf F, Frossard N, Gasser B, Mazzucotelli JP, Hermine O, Maroteaux L, Monassier L (November 2017)."The role of 5-HT2B receptors in mitral valvulopathy: bone marrow mobilization of endothelial progenitors".British Journal of Pharmacology.174 (22):4123–4139.doi:10.1111/bph.13981.PMC 5680644.PMID 28806488.
  95. ^Rudin D, Liechti ME, Luethi D (September 2021)."Molecular and clinical aspects of potential neurotoxicity induced by new psychoactive stimulants and psychedelics".Exp Neurol.343 113778.doi:10.1016/j.expneurol.2021.113778.PMID 34090893.
  96. ^Custodio RJ, Ortiz DM, Lee HJ, Sayson LV, Kim M, Lee YS, Kim KM, Cheong JH, Kim HJ (July 2025). "Serotonin 2C receptors are also important in head-twitch responses in male mice".Psychopharmacology (Berl).242 (7):1585–1605.doi:10.1007/s00213-023-06482-9.PMID 37882810.
  97. ^Capela JP, Ruscher K, Lautenschlager M, Freyer D, Dirnagl U, Gaio AR, Bastos ML, Meisel A, Carvalho F (2006). "Ecstasy-induced cell death in cortical neuronal cultures is serotonin 2A-receptor-dependent and potentiated under hyperthermia".Neuroscience.139 (3):1069–1081.doi:10.1016/j.neuroscience.2006.01.007.PMID 16504407.
  98. ^Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F (June 2009). "Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview".Mol Neurobiol.39 (3):210–271.doi:10.1007/s12035-009-8064-1.PMID 19373443.To further corroborate the fact that MDMA agonistic properties at the 5-HT2A receptor could produce neuronal death, DOI, a prototypical agonist of that receptor was added to cortical neurons [289]. DOI (10 to 100 μM for 24 or 48 h) also induced a dose- and time-dependent apoptotic cortical neuronal apoptosis, which was attenuated by ketanserin and R-96544 [289]. Ketanserin and R-96544 are competitive selective 5-HT2A receptor antagonists and only attenuated MDMA-induced cortical neurodegeneration. However, an antibody raised against the 5-HT2A-receptor, an "irreversible" non-competitive 5-HT2A receptor blocker, prevented almost completely MDMA- and DOI-induced cortical neurotoxicity [289, 290]. Neuronal apoptosis mediated by MDMA is accompanied by activation of caspase 3, which could be blocked by the antibody raised against the 5-HT2A receptor [290]. Therefore, it is likely that DOI- and MDMA-induced neuronal apoptosis arises from direct stimulation of the 5-HT2A receptor [289, 290].
  99. ^Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI (September 2003). "The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy")".Pharmacol Rev.55 (3):463–508.doi:10.1124/pr.55.3.3.PMID 12869661.
  100. ^Gudelsky GA, Yamamoto BK, Nash JF (November 1994). "Potentiation of 3,4-methylenedioxymethamphetamine-induced dopamine release and serotonin neurotoxicity by 5-HT2 receptor agonists".Eur J Pharmacol.264 (3):325–330.doi:10.1016/0014-2999(94)90669-6.PMID 7698172.
  101. ^Schmidt CJ, Black CK, Abbate GM, Taylor VL (October 1990). "Methylenedioxymethamphetamine-induced hyperthermia and neurotoxicity are independently mediated by 5-HT2 receptors".Brain Res.529 (1–2):85–90.doi:10.1016/0006-8993(90)90813-q.PMID 1980848.
  102. ^Armstrong BD, Paik E, Chhith S, Lelievre V, Waschek JA, Howard SG (2004). "Potentiation of (DL)-3,4-methylenedioxymethamphetamine (MDMA)-induced toxicity by the serotonin 2A receptior partial agonist d-lysergic acid diethylamide (LSD), and the protection of same by the serotonin 2A/2C receptor antagonist MDL 11,939".Neuroscience Research Communications.35 (2):83–95.doi:10.1002/nrc.20023.
  103. ^abBlier P, El Mansari M (2013)."Serotonin and beyond: therapeutics for major depression".Philos Trans R Soc Lond B Biol Sci.368 (1615) 20120536.doi:10.1098/rstb.2012.0536.PMC 3638389.PMID 23440470.
  104. ^abPourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT (August 2022)."The Roles of Serotonin in Neuropsychiatric Disorders".Cell Mol Neurobiol.42 (6):1671–1692.doi:10.1007/s10571-021-01064-9.PMC 11421740.PMID 33651238.
  105. ^Rothman RB, Baumann MH (April 2002). "Serotonin releasing agents. Neurochemical, therapeutic and adverse effects".Pharmacol Biochem Behav.71 (4):825–836.doi:10.1016/s0091-3057(01)00669-4.PMID 11888573.
  106. ^Rothman RB, Baumann MH (July 2002). "Therapeutic and adverse actions of serotonin transporter substrates".Pharmacol Ther.95 (1):73–88.doi:10.1016/s0163-7258(02)00234-6.PMID 12163129.
  107. ^Rothman RB, Baumann MH (2000). "Neurochemical mechanisms of phentermine and fenfluramine: Therapeutic and adverse effects".Drug Development Research.51 (2):52–65.doi:10.1002/1098-2299(200010)51:2<52::AID-DDR2>3.0.CO;2-H.ISSN 0272-4391.
  108. ^Rothman RB, Baumann MH (2006). "Therapeutic potential of monoamine transporter substrates".Curr Top Med Chem.6 (17):1845–1859.doi:10.2174/156802606778249766.PMID 17017961.
  109. ^Dunlap LE, Andrews AM, Olson DE (October 2018)."Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine"(PDF).ACS Chem Neurosci.9 (10):2408–2427.doi:10.1021/acschemneuro.8b00155.PMC 6197894.PMID 30001118.
  110. ^Oeri HE (May 2021)."Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy".J Psychopharmacol.35 (5):512–536.doi:10.1177/0269881120920420.PMC 8155739.PMID 32909493.
  111. ^Malcolm B, Thomas K (June 2022). "Serotonin toxicity of serotonergic psychedelics".Psychopharmacology (Berl).239 (6):1881–1891.doi:10.1007/s00213-021-05876-x.PMID 34251464.
  112. ^abThomas K (2024).Toxicology and Pharmacological Interactions of Classic Psychedelics. Current Topics in Behavioral Neurosciences. Berlin, Heidelberg: Springer Berlin Heidelberg.doi:10.1007/7854_2024_508.PMID 39042251. Retrieved14 May 2025.
  113. ^Tap SC, Thomas K, Páleníček T, Stenbæk DS, Oliveira-Maia AJ, van Dalfsen J, Schoevers R (September 2025)."Concomitant use of antidepressants and classic psychedelics: A scoping review".J Psychopharmacol.39 (10) 02698811251368360: 2698811251368360.doi:10.1177/02698811251368360.PMC 12572353.PMID 40937732.{{cite journal}}: CS1 maint: article number as page number (link)
  114. ^Sapienza J (13 October 2023)."The Key Role of Intracellular 5-HT2A Receptors: A Turning Point in Psychedelic Research?".Psychoactives.2 (4):287–293.doi:10.3390/psychoactives2040018.ISSN 2813-1851.
  115. ^Kozlenkov A, González-Maeso J (2013). "Animal Models and Hallucinogenic Drugs".The Neuroscience of Hallucinations. New York, NY: Springer New York. pp. 253–277.doi:10.1007/978-1-4614-4121-2_14.ISBN 978-1-4614-4120-5.
Tryptamines
No ring subs.
4-Hydroxytryptamines
5-Hydroxytryptamines
5-Methoxytryptamines
Other ring subs.
α-Alkyltryptamines
Others
Cyclized
Bioisosteres
Phenethylamines
Scalines
2C-x
3C-x
DOx
4C-x
Ψ-PEA
MDxx
FLY
25x-NB (NBOMes)
Others
Cyclized
Lysergamides
Others
Natural sources
5-HT1
5-HT1A
5-HT1B
5-HT1D
5-HT1E
5-HT1F
5-HT2
5-HT2A
5-HT2B
5-HT2C
5-HT37
5-HT3
5-HT4
5-HT5A
5-HT6
5-HT7
Retrieved from "https://en.wikipedia.org/w/index.php?title=Serotonin_5-HT2A_receptor_agonist&oldid=1337408824"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp