Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Sequence space

From Wikipedia, the free encyclopedia
Vector space of infinite sequences
For usage in evolutionary biology, seeSequence space (evolution). For mathematical operations on sequence numbers, seeSerial number arithmetic.

Infunctional analysis and related areas ofmathematics, asequence space is avector space whose elements are infinitesequences ofreal orcomplex numbers. Equivalently, it is afunction space whose elements are functions from thenatural numbers to thefieldK{\displaystyle \mathbb {K} } of real or complex numbers. The set of all such functions is naturally identified with the set of all possibleinfinite sequences with elements inK{\displaystyle \mathbb {K} }, and can be turned into avector space under the operations ofpointwise addition of functions and pointwise scalar multiplication. All sequence spaces arelinear subspaces of this space. Sequence spaces are typically equipped with anorm, or at least the structure of atopological vector space.

The most important sequence spaces in analysis are thep{\displaystyle \textstyle \ell ^{p}} spaces, consisting of thep{\displaystyle p}-power summable sequences, with thep{\displaystyle p}-norm. These are special cases ofLp{\displaystyle L^{p}} spaces for thecounting measure on the set of natural numbers. Other important classes of sequences likeconvergent sequences ornull sequences form sequence spaces, respectively denotedc{\displaystyle c} andc0{\displaystyle c_{0}}, with thesup norm. Any sequence space can also be equipped with thetopology ofpointwise convergence, under which it becomes a special kind ofFréchet space calledFK-space.

Definition

[edit]

Asequencex=(xn)nN{\displaystyle \textstyle x_{\bullet }=(x_{n})_{n\in \mathbb {N} }} in a setX{\displaystyle X} is just anX{\displaystyle X}-valued mapx:NX{\displaystyle x_{\bullet }:\mathbb {N} \to X} whose value atnN{\displaystyle n\in \mathbb {N} } is denoted byxn{\displaystyle x_{n}} instead of the usual parentheses notationx(n){\displaystyle x(n)}.

Space of all sequences

[edit]

LetK{\displaystyle \mathbb {K} } denote the field either of real or complex numbers. The setKN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }} of allsequences of elements ofK{\displaystyle \mathbb {K} } is avector space forcomponentwise addition(xn)nN+(yn)nN=(xn+yn)nN,{\displaystyle \left(x_{n}\right)_{n\in \mathbb {N} }+\left(y_{n}\right)_{n\in \mathbb {N} }=\left(x_{n}+y_{n}\right)_{n\in \mathbb {N} },}and componentwisescalar multiplicationα(xn)nN=(αxn)nN.{\displaystyle \alpha \left(x_{n}\right)_{n\in \mathbb {N} }=\left(\alpha x_{n}\right)_{n\in \mathbb {N} }.}

Asequence space is anylinear subspace ofKN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }}.

As a topological space,KN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }} is naturally endowed with theproduct topology. Under this topology,KN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }} isFréchet, meaning that it is acomplete,metrizable,locally convextopological vector space (TVS). However, this topology is rather pathological: there are nocontinuous norms onKN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }} (and thus the product topology cannotbe defined by anynorm).[1] Among Fréchet spaces,KN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }} is minimal in having no continuous norms:

Theorem[1]LetX{\displaystyle X} be aFréchet space overK{\displaystyle \mathbb {K} }.Then the following are equivalent:

  1. X{\displaystyle X} admits no continuous norm (that is, any continuous seminorm onX{\displaystyle X} has a nontrivial null space).
  2. X{\displaystyle X} contains a vector subspace TVS-isomorphic toKN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }}.
  3. X{\displaystyle X} contains a complemented vector subspace TVS-isomorphic toKN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }}.

But the product topology is also unavoidable:KN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }} does not admit astrictly coarser Hausdorff, locally convex topology.[1] For that reason, the study of sequences begins by finding a strictlinear subspace of interest, and endowing it with a topologydifferent from thesubspace topology.

p spaces

[edit]
See also:Lp space andL-infinity

For0<p<{\displaystyle 0<p<\infty },p{\displaystyle \textstyle \ell ^{p}} is the subspace ofKN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }} consisting of all sequencesx=(xn)nN{\displaystyle \textstyle x_{\bullet }=(x_{n})_{n\in \mathbb {N} }} satisfyingn|xn|p<.{\displaystyle \sum _{n}|x_{n}|^{p}<\infty .}

Ifp1{\displaystyle p\geq 1}, then the real-valued functionp{\displaystyle \|\cdot \|_{p}} onp{\displaystyle \textstyle \ell ^{p}} defined byxp = (n|xn|p)1/p for all xp{\displaystyle \|x\|_{p}~=~{\Bigl (}\sum _{n}|x_{n}|^{p}{\Bigr )}^{1/p}\qquad {\text{ for all }}x\in \ell ^{p}}defines anorm onp{\displaystyle \textstyle \ell ^{p}}. In fact,p{\displaystyle \textstyle \ell ^{p}} is acomplete metric space with respect to this norm, and therefore is aBanach space.

Ifp=2{\displaystyle p=2} then2{\displaystyle \textstyle \ell ^{2}} is also aHilbert space when endowed with its canonicalinner product, called theEuclidean inner product, defined for allx,yp{\displaystyle \textstyle x_{\bullet },y_{\bullet }\in \ell ^{p}} byx,y = nxn¯yn.{\displaystyle \langle x_{\bullet },y_{\bullet }\rangle ~=~\sum _{n}{\overline {x_{n}\!}}\,y_{n}.}The canonical norm induced by this inner product is the usual2{\displaystyle \textstyle \ell ^{2}}-norm, meaning thatx2=x,x{\displaystyle \textstyle \|\mathbf {x} \|_{2}={\sqrt {\langle \mathbf {x} ,\mathbf {x} \rangle }}} for allxp{\displaystyle \textstyle \mathbf {x} \in \ell ^{p}}.

Ifp={\displaystyle p=\infty }, then{\displaystyle \textstyle \ell ^{\infty }} is defined to be the space of allbounded sequences endowed with the normx = supn|xn|,{\displaystyle \|x\|_{\infty }~=~\sup _{n}|x_{n}|,}{\displaystyle \textstyle \ell ^{\infty }} is also a Banach space.

If0<p<1{\displaystyle 0<p<1}, thenp{\displaystyle \textstyle \ell ^{p}} does not carry a norm, but rather ametric defined byd(x,y) = n|xnyn|p.{\displaystyle d(x,y)~=~\sum _{n}\left|x_{n}-y_{n}\right|^{p}.}

c,c0 andc00

[edit]
See also:c space

Aconvergent sequence is any sequencexKN{\displaystyle \textstyle x_{\bullet }\in \mathbb {K} ^{\mathbb {N} }} such thatlimnxn{\displaystyle \textstyle \lim _{n\to \infty }x_{n}} exists. The setc{\displaystyle c} of all convergent sequences is a vector subspace ofKN<{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }<} called thespace of convergent sequences. Since every convergent sequence is bounded,c{\displaystyle c} is a linear subspace of{\displaystyle \ell ^{\infty }}. Moreover, this sequence space is a closed subspace of{\displaystyle \textstyle \ell ^{\infty }} with respect to thesupremum norm, and so it is a Banach space with respect to this norm.

A sequence that converges to0{\displaystyle 0} is called anull sequence and is said tovanish. The set of all sequences that converge to0{\displaystyle 0} is a closed vector subspace ofc{\displaystyle c} that when endowed with thesupremum norm becomes a Banach space that is denoted byc0{\displaystyle c_{0}} and is called thespace of null sequences or thespace of vanishing sequences.

Thespace of eventually zero sequences,c00{\displaystyle c_{00}}, is the subspace ofc0{\displaystyle c_{0}} consisting of all sequences which have only finitely many nonzero elements. This is not a closed subspace and therefore is not a Banach space with respect to the infinity norm. For example, the sequence(xnk)kN{\displaystyle \textstyle (x_{nk})_{k\in \mathbb {N} }} wherexnk=1/k{\displaystyle x_{nk}=1/k} for the firstn{\displaystyle n} entries (fork=1,,n{\displaystyle k=1,\ldots ,n}) and is zero everywhere else (that is,(xnk)kN={\displaystyle \textstyle (x_{nk})_{k\in \mathbb {N} }={}\!}(1,12,,{\displaystyle {\bigl (}1,{\tfrac {1}{2}},\ldots ,{}}1n1,1n,{\displaystyle {\tfrac {1}{n-1}},{\tfrac {1}{n}},{}}0,0,){\displaystyle 0,0,\ldots {\bigr )}}) is aCauchy sequence but it does not converge to a sequence inc00.{\displaystyle c_{00}.}

Space of all finite sequences

[edit]

LetK={(x1,x2,)KN:all but finitely many xi equal 0}{\displaystyle \mathbb {K} ^{\infty }=\left\{\left(x_{1},x_{2},\ldots \right)\in \mathbb {K} ^{\mathbb {N} }:{\text{all but finitely many }}x_{i}{\text{ equal }}0\right\}}

denote thespace of finite sequences overK{\displaystyle \mathbb {K} }. As a vector space,K{\displaystyle \textstyle \mathbb {K} ^{\infty }} is equal toc00{\displaystyle c_{00}}, butK{\displaystyle \textstyle \mathbb {K} ^{\infty }} has a different topology.

For everynatural numbernN{\displaystyle n\in \mathbb {N} }, letKn{\displaystyle \textstyle \mathbb {K} ^{n}} denote the usualEuclidean space endowed with theEuclidean topology and letInKn:KnK{\displaystyle \textstyle \operatorname {In} _{\mathbb {K} ^{n}}:\mathbb {K} ^{n}\to \mathbb {K} ^{\infty }} denote the canonical inclusionInKn(x1,,xn)=(x1,,xn,0,0,).{\displaystyle \operatorname {In} _{\mathbb {K} ^{n}}\left(x_{1},\ldots ,x_{n}\right)=\left(x_{1},\ldots ,x_{n},0,0,\ldots \right).}Theimage of each inclusion isIm(InKn)={(x1,,xn,0,0,):x1,,xnK}=Kn×{(0,0,)}{\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {K} ^{n}}\right)=\left\{\left(x_{1},\ldots ,x_{n},0,0,\ldots \right):x_{1},\ldots ,x_{n}\in \mathbb {K} \right\}=\mathbb {K} ^{n}\times \left\{(0,0,\ldots )\right\}}and consequently,K=nNIm(InKn).{\displaystyle \mathbb {K} ^{\infty }=\bigcup _{n\in \mathbb {N} }\operatorname {Im} \left(\operatorname {In} _{\mathbb {K} ^{n}}\right).}

This family of inclusions givesK{\displaystyle \textstyle \mathbb {K} ^{\infty }} afinal topologyτ{\displaystyle \textstyle \tau ^{\infty }}, defined to be thefinest topology onK{\displaystyle \textstyle \mathbb {K} ^{\infty }} such that all the inclusions are continuous (an example of acoherent topology). With this topology,K{\displaystyle \textstyle \mathbb {K} ^{\infty }} becomes acomplete,Hausdorff,locally convex,sequential,topological vector space that isnotFréchet–Urysohn. The topologyτ{\displaystyle \textstyle \tau ^{\infty }} is alsostrictly finer than thesubspace topology induced onK{\displaystyle \textstyle \mathbb {K} ^{\infty }} byKN{\displaystyle \textstyle \mathbb {K} ^{\mathbb {N} }}.

Convergence inτ{\displaystyle \textstyle \tau ^{\infty }} has a natural description: ifvK{\displaystyle \textstyle v\in \mathbb {K} ^{\infty }} andv{\displaystyle v_{\bullet }} is a sequence inK{\displaystyle \textstyle \mathbb {K} ^{\infty }} thenvv{\displaystyle v_{\bullet }\to v} inτ{\displaystyle \textstyle \tau ^{\infty }} if and onlyv{\displaystyle v_{\bullet }} is eventually contained in a single imageIm(InKn){\displaystyle \textstyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {K} ^{n}}\right)} andvv{\displaystyle v_{\bullet }\to v} under the natural topology of that image.

Often, each imageIm(InKn){\displaystyle \textstyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {K} ^{n}}\right)} is identified with the correspondingKn{\displaystyle \textstyle \mathbb {K} ^{n}}; explicitly, the elements(x1,,xn)Kn{\displaystyle \textstyle \left(x_{1},\ldots ,x_{n}\right)\in \mathbb {K} ^{n}} and(x1,,xn,0,0,0,){\displaystyle \left(x_{1},\ldots ,x_{n},0,0,0,\ldots \right)} are identified. This is facilitated by the fact that the subspace topology onIm(InKn){\displaystyle \textstyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {K} ^{n}}\right)}, thequotient topology from the mapInKn{\displaystyle \textstyle \operatorname {In} _{\mathbb {K} ^{n}}}, and the Euclidean topology onKn{\displaystyle \textstyle \mathbb {K} ^{n}} all coincide. With this identification,((K,τ),(InKn)nN){\displaystyle \textstyle \left(\left(\mathbb {K} ^{\infty },\tau ^{\infty }\right),\left(\operatorname {In} _{\mathbb {K} ^{n}}\right)_{n\in \mathbb {N} }\right)} is thedirect limit of the directed system((Kn)nN,(InKmKn)mnN,N),{\displaystyle \textstyle \left(\left(\mathbb {K} ^{n}\right)_{n\in \mathbb {N} },\left(\operatorname {In} _{\mathbb {K} ^{m}\to \mathbb {K} ^{n}}\right)_{m\leq n\in \mathbb {N} },\mathbb {N} \right),} where every inclusion adds trailing zeros:InKmKn(x1,,xm)=(x1,,xm,0,,0).{\displaystyle \operatorname {In} _{\mathbb {K} ^{m}\to \mathbb {K} ^{n}}\left(x_{1},\ldots ,x_{m}\right)=\left(x_{1},\ldots ,x_{m},0,\ldots ,0\right).} This shows(K,τ){\displaystyle \textstyle \left(\mathbb {K} ^{\infty },\tau ^{\infty }\right)} is anLB-space.

Other sequence spaces

[edit]

The space of boundedseries, denote bybs, is the space of sequencesx{\displaystyle x} for whichsupn|i=0nxi|<.{\displaystyle \sup _{n}{\biggl \vert }\sum _{i=0}^{n}x_{i}{\biggr \vert }<\infty .}

This space, when equipped with the normxbs=supn|i=0nxi|,{\displaystyle \|x\|_{bs}=\sup _{n}{\biggl \vert }\sum _{i=0}^{n}x_{i}{\biggr \vert },}

is a Banach space isometrically isomorphic to,{\displaystyle \textstyle \ell ^{\infty },} via thelinear mapping(xn)nN(i=0nxi)nN.{\displaystyle (x_{n})_{n\in \mathbb {N} }\mapsto {\biggl (}\sum _{i=0}^{n}x_{i}{\biggr )}_{n\in \mathbb {N} }.}

The subspacecs{\displaystyle cs} consisting of all convergent series is a subspace that goes over to the spacec{\displaystyle c} under this isomorphism.

The spaceΦ{\displaystyle \Phi } orc00{\displaystyle c_{00}} is defined to be the space of all infinite sequences with only a finite number of non-zero terms (sequences withfinite support). This set isdense in many sequence spaces.

Properties ofp spaces and the spacec0

[edit]
See also:c space

The space2{\displaystyle \textstyle \ell ^{2}} is the onlyp{\displaystyle \textstyle \ell ^{p}} space that is aHilbert space, since any norm that is induced by aninner product should satisfy theparallelogram law

x+yp2+xyp2=2xp2+2yp2.{\displaystyle \|x+y\|_{p}^{2}+\|x-y\|_{p}^{2}=2\|x\|_{p}^{2}+2\|y\|_{p}^{2}.}

Substituting two distinct unit vectors forx{\displaystyle x} andy{\displaystyle y} directly shows that the identity is not true unlessp=2{\displaystyle p=2}.

Eachp{\displaystyle \textstyle \ell ^{p}} is distinct, in thatp{\displaystyle \textstyle \ell ^{p}} is a strictsubset ofs{\displaystyle \textstyle \ell ^{s}} wheneverp<s{\displaystyle p<s}; furthermore,p{\displaystyle \textstyle \ell ^{p}} is not linearlyisomorphic tos{\displaystyle \textstyle \ell ^{s}} whenps{\displaystyle p\neq s}. In fact, by Pitt's theorem (Pitt 1936), every bounded linear operator froms{\displaystyle \textstyle \ell ^{s}} top{\displaystyle \textstyle \ell ^{p}} iscompact whenp<s{\displaystyle p<s}. No such operator can be an isomorphism; and further, it cannot be an isomorphism on any infinite-dimensional subspace ofs{\displaystyle \ell ^{s}}, and is thus said to bestrictly singular.

If1<p<{\displaystyle 1<p<\infty }, then the(continuous) dual space ofp{\displaystyle \textstyle \ell ^{p}} is isometrically isomorphic toq{\displaystyle \textstyle \ell ^{q}}, whereq{\displaystyle q} is theHölder conjugate ofp{\displaystyle p}:1/p+1/q=1{\displaystyle 1/p+1/q=1}. The specific isomorphism associates to an elementx{\displaystyle x} ofq{\displaystyle \textstyle \ell ^{q}} the functionalLx(y)=nxnyn{\displaystyle L_{x}(y)=\sum _{n}x_{n}y_{n}}fory{\displaystyle y} inp{\displaystyle \textstyle \ell ^{p}}.Hölder's inequality implies thatLx{\displaystyle L_{x}} is a bounded linear functional onp{\displaystyle \textstyle \ell ^{p}}, and in fact|Lx(y)|xqyp{\displaystyle |L_{x}(y)|\leq \|x\|_{q}\,\|y\|_{p}}so that the operator norm satisfiesLx(p)=defsupyp,y0|Lx(y)|ypxq.{\displaystyle \|L_{x}\|_{(\ell ^{p})^{*}}\mathrel {\stackrel {\rm {def}}{=}} \sup _{y\in \ell ^{p},y\not =0}{\frac {|L_{x}(y)|}{\|y\|_{p}}}\leq \|x\|_{q}.}In fact, takingy{\displaystyle y} to be the element ofp{\displaystyle \textstyle \ell ^{p}} withyn={0if xn=0xn1|xn|qif xn0{\displaystyle y_{n}={\begin{cases}0&{\text{if}}\ x_{n}=0\\x_{n}^{-1}|x_{n}|^{q}&{\text{if}}~x_{n}\neq 0\end{cases}}}givesLx(y)=xq{\displaystyle L_{x}(y)=\|x\|_{q}}, so that in factLx(p)=xq.{\displaystyle \|L_{x}\|_{(\ell ^{p})^{*}}=\|x\|_{q}.}Conversely, given a bounded linear functionalL{\displaystyle L} onp{\displaystyle \textstyle \ell ^{p}}, the sequence defined byxn=L(en){\displaystyle x_{n}=L(e_{n})} lies inq{\displaystyle \textstyle \ell ^{q}}. Thus the mappingxLx{\displaystyle x\mapsto L_{x}} gives an isometryκq:q(p).{\displaystyle \kappa _{q}:\ell ^{q}\to (\ell ^{p})^{*}.}

The mapqκq(p)(κq)1(q){\displaystyle \ell ^{q}\xrightarrow {\kappa _{q}} (\ell ^{p})^{*}\xrightarrow {(\kappa _{q}^{*})^{-1}} (\ell ^{q})^{**}}obtained by composingκp{\displaystyle \kappa _{p}} with the inverse of itstranspose coincides with thecanonical injection ofq{\displaystyle \textstyle \ell ^{q}} into itsdouble dual. As a consequenceq{\displaystyle \textstyle \ell ^{q}} is areflexive space. Byabuse of notation, it is typical to identifyq{\displaystyle \textstyle \ell ^{q}} with the dual ofp{\displaystyle \textstyle \ell ^{p}}:(p)=q{\displaystyle \textstyle (\ell ^{p})^{*}=\ell ^{q}}. Then reflexivity is understood by the sequence of identifications(p)=(q)=p{\displaystyle \textstyle (\ell ^{p})^{**}=(\ell ^{q})^{*}=\ell ^{p}}.

The spacec0{\displaystyle c_{0}} is defined as the space of all sequences converging to zero, with norm identical tox{\displaystyle \|x\|_{\infty }}. It is a closed subspace of{\displaystyle \textstyle \ell ^{\infty }}, hence a Banach space. Thedual ofc0{\displaystyle c_{0}} is1{\displaystyle \textstyle \ell ^{1}}; the dual of1{\displaystyle \textstyle \ell ^{1}} is{\displaystyle \textstyle \ell ^{\infty }}. For the case of natural numbers index set, thep{\displaystyle \textstyle \ell ^{p}} andc0{\displaystyle c_{0}} areseparable, with the sole exception of{\displaystyle \textstyle \ell ^{\infty }}. The dual of{\displaystyle \textstyle \ell ^{\infty }} is theba space.

The spacesc0{\displaystyle c_{0}} andp{\displaystyle \textstyle \ell ^{p}} (for1p<{\displaystyle 1\leq p<\infty }) have a canonical unconditionalSchauder basis{ei:i=1,2,}{\displaystyle \{e_{i}:i=1,2,\ldots \}}, whereei{\displaystyle e_{i}} is the sequence which is zero but for a1{\displaystyle 1} in thei{\displaystyle i}th entry.

The space ℓ1 has theSchur property: In ℓ1, any sequence that isweakly convergent is alsostrongly convergent (Schur 1921). However, since theweak topology on infinite-dimensional spaces is strictly weaker than thestrong topology, there arenets in ℓ1 that are weak convergent but not strong convergent.

Thep{\displaystyle \textstyle \ell ^{p}} spaces can beembedded into manyBanach spaces. The question of whether every infinite-dimensional Banach space contains an isomorph of somep{\displaystyle \textstyle \ell ^{p}} or ofc0{\displaystyle c_{0}}, was answered negatively byB. S. Tsirelson's construction ofTsirelson space in 1974. The dual statement, that every separable Banach space is linearly isometric to aquotient space of1{\displaystyle \textstyle \ell ^{1}}, was answered in the affirmative byBanach & Mazur (1933). That is, for every separable Banach spaceX{\displaystyle X}, there exists a quotient mapQ:1X{\displaystyle \textstyle Q:\ell ^{1}\to X}, so thatX{\displaystyle X} is isomorphic to1/kerQ{\displaystyle \textstyle \ell ^{1}/\ker Q}. In general,kerQ{\displaystyle \operatorname {ker} Q} is not complemented in1{\displaystyle \textstyle \ell ^{1}}, that is, there does not exist a subspaceY{\displaystyle Y} of1{\displaystyle \textstyle \ell ^{1}} such that1=YkerQ{\displaystyle \textstyle \ell ^{1}=Y\oplus \ker Q}. In fact,1{\displaystyle \textstyle \ell ^{1}} has uncountably many uncomplemented subspaces that are not isomorphic to one another (for example, takeX=p{\displaystyle \textstyle X=\ell ^{p}}; since there are uncountably many suchX{\displaystyle X}'s, and since nop{\displaystyle \textstyle \ell ^{p}} is isomorphic to any other, there are thus uncountably many kerQ's).

Except for the trivial finite-dimensional case, an unusual feature ofq{\displaystyle \textstyle \ell ^{q}} is that it is notpolynomially reflexive.

p spaces are increasing inp

[edit]

Forp[1,]{\displaystyle p\in [1,\infty ]}, the spacesp{\displaystyle \textstyle \ell ^{p}} are increasing inp{\displaystyle p}, with the inclusion operator being continuous: for1p<q{\displaystyle 1\leq p<q\leq \infty }, one hasxqxp{\displaystyle \|x\|_{q}\leq \|x\|_{p}}. Indeed, the inequality is homogeneous in thexi{\displaystyle x_{i}}, so it is sufficient to prove it under the assumption thatxp=1{\displaystyle \|x\|_{p}=1}. In this case, we need only show that|xi|q1{\displaystyle \textstyle \sum |x_{i}|^{q}\leq 1} forq>p{\displaystyle q>p}. But ifxp=1{\displaystyle \|x\|_{p}=1}, then|xi|1{\displaystyle |x_{i}|\leq 1} for alli{\displaystyle i}, and then|xi|q{\displaystyle \textstyle \sum |x_{i}|^{q}\leq {}\!}|xi|p=1{\displaystyle \textstyle \sum |x_{i}|^{p}=1}.

2 is isomorphic to all separable, infinite dimensional Hilbert spaces

[edit]

LetH{\displaystyle H} be aseparable Hilbert space. Every orthogonal set inH{\displaystyle H} is at mostcountable (i.e. has finitedimension or0{\displaystyle \aleph _{0}}).[2] The following two items are related:

Properties of1 spaces

[edit]

A sequence of elements in1{\displaystyle \textstyle \ell ^{1}} converges in the space of complex sequences1{\displaystyle \textstyle \ell ^{1}} if and only if it converges weakly in this space.[3] IfK{\displaystyle K} is a subset of this space, then the following are equivalent:[3]

  1. K{\displaystyle K} is compact;
  2. K{\displaystyle K} is weakly compact;
  3. K{\displaystyle K} is bounded, closed, and equismall at infinity.

HereK{\displaystyle K} beingequismall at infinity means that for everyε>0{\displaystyle \varepsilon >0}, there exists a natural numbernε0{\displaystyle n_{\varepsilon }\geq 0} such thatn=nϵ|sn|<ε{\displaystyle \textstyle \sum _{n=n_{\epsilon }}^{\infty }|s_{n}|<\varepsilon } for alls=(sn)n=1K{\displaystyle \textstyle s=\left(s_{n}\right)_{n=1}^{\infty }\in K}.

See also

[edit]

References

[edit]
  1. ^abcJarchow 1981, pp. 129–130.
  2. ^Debnath, Lokenath; Mikusinski, Piotr (2005).Hilbert Spaces with Applications. Elsevier. pp. 120–121.ISBN 978-0-12-2084386.
  3. ^abTrèves 2006, pp. 451–458.

Bibliography

[edit]
Basic concepts
L1 spaces
L2 spaces
L{\displaystyle L^{\infty }} spaces
Maps
Inequalities
Results
ForLebesgue measure
Applications & related
Types of Banach spaces
Banach spaces are:
Function space Topologies
Linear operators
Operator theory
Theorems
Analysis
Types of sets
Subsets / set operations
Examples
Applications
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Sequence_space&oldid=1302406440"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp