
TheSchoenflies (orSchönflies)notation, named after theGerman mathematicianArthur Moritz Schoenflies, is a notation primarily used to specifypoint groups in three dimensions. Because a point group alone is completely adequate to describe thesymmetry of a molecule, the notation is often sufficient and commonly used forspectroscopy. However, incrystallography, there is additionaltranslational symmetry, and point groups are not enough to describe the full symmetry of crystals, so the fullspace group is usually used instead. The naming of full space groups usually follows another common convention, theHermann–Mauguin notation, also known as the international notation.
Although Schoenflies notation without superscripts is a pure point group notation, optionally, superscripts can be added to further specify individual space groups. However, for space groups, the connection to the underlyingsymmetry elements is much more clear in Hermann–Mauguin notation, so the latter notation is usually preferred for space groups.
Symmetry elements are denoted byi for centers of inversion,C for proper rotation axes,σ for mirror planes, andS for improper rotation axes (rotation-reflection axes).C andS are usually followed by a subscript number (abstractly denotedn) denoting the order of rotation possible.
By convention, the axis of proper rotation of greatest order is defined as the principal axis. All other symmetry elements are described in relation to it. A vertical mirror plane (containing the principal axis) is denotedσv; a horizontal mirror plane (perpendicular to the principal axis) is denotedσh.
In three dimensions, there are an infinite number of point groups, but all of them can be classified by several families.
All groups that do not contain more than one higher-order axis (order 3 or more) can be arranged as shown in a table below; symbols in red are rarely used.
| n = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... | ∞ | |
|---|---|---|---|---|---|---|---|---|---|---|
| Cn | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ... | C∞ |
| Cnv | C1v =C1h | C2v | C3v | C4v | C5v | C6v | C7v | C8v | ... | C∞v |
| Cnh | C1h =Cs | C2h | C3h | C4h | C5h | C6h | C7h | C8h | ... | C∞h |
| Sn | S1 =Cs | S2 =Ci | S3 =C3h | S4 | S5 =C5h | S6 | S7 =C7h | S8 | ... | S∞ =C∞h |
| Cni (redundant) | C1i =Ci | C2i =Cs | C3i =S6 | C4i =S4 | C5i =S10 | C6i =C3h | C7i =S14 | C8i =S8 | ... | C∞i =C∞h |
| Dn | D1 =C2 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | ... | D∞ |
| Dnh | D1h =C2v | D2h | D3h | D4h | D5h | D6h | D7h | D8h | ... | D∞h |
| Dnd | D1d =C2h | D2d | D3d | D4d | D5d | D6d | D7d | D8d | ... | D∞d =D∞h |
In crystallography, due to thecrystallographic restriction theorem,n is restricted to the values of 1, 2, 3, 4, or 6. The noncrystallographic groups are shown with grayed backgrounds.D4d andD6d are also forbidden because they containimproper rotations withn = 8 and 12 respectively. The 27 point groups in the table plusT,Td,Th,O andOh constitute 32crystallographic point groups.
Groups withn = ∞ are called limit groups orCurie groups. There are two more limit groups, not listed in the table:K (forKugel, German for ball, sphere), the group of all rotations in 3-dimensional space; andKh, the group of all rotations and reflections. In mathematics and theoretical physics they are known respectively as thespecial orthogonal group and theorthogonal group in three-dimensional space, with the symbols SO(3) and O(3).
Thespace groups with given point group are numbered by 1, 2, 3, ... (in the same order as their international number) and this number is added as a superscript to the Schönflies symbol for the corresponding point group. For example, groups numbers 3 to 5 whose point group isC2 have Schönflies symbolsC1
2,C2
2,C3
2.
While in case of point groups, Schönflies symbol defines the symmetry elements of group unambiguously, the additional superscript for space group doesn't have any information about translational symmetry of space group (lattice centering, translational components of axes and planes), hence one needs to refer to special tables, containing information about correspondence between Schönflies andHermann–Mauguin notation. Such table is given inList of space groups page.