

ASchmidt camera, also referred to as theSchmidt telescope, is acatadioptricastrophotographictelescope designed to provide widefields of view with limitedaberrations. The design was invented byBernhard Schmidt in 1930.
Some notable examples are theSamuel Oschin telescope (formerly Palomar Schmidt), theUK Schmidt Telescope and the ESO Schmidt; these provided the major source of all-sky photographic imaging from 1950 until 2000, when electronic detectors took over. A recent example is theKepler space telescope exoplanet finder.
Other related designs are theWright camera andLurie–Houghton telescope.
The Schmidt camera was invented by Estonian-German opticianBernhard Schmidt in 1930.[1] Its optical components are an easy-to-makesphericalprimary mirror, and an aspherical correctinglens, known as aSchmidt corrector plate, located at the center of curvature of the primary mirror. The film or other detector is placed inside the camera, at the prime focus. The design is noted for allowing very fastfocal ratios, while controllingcoma andastigmatism.[2]
Schmidt cameras have very strongly curvedfocal planes, thus requiring that the film, plate, or other detector be correspondingly curved. In some cases the detector is made curved; in others flat media is mechanically conformed to the shape of the focal plane through the use of retaining clips or bolts, or by the application of avacuum. Afield flattener, in its simplest form a planoconvex lens in front of the film plate or detector, is sometimes used. Since the corrector plate is at the center of curvature of the primary mirror in this design the tube length can be very long for a wide-field telescope.[3] There are also the drawbacks of having the obstruction of the film holder or detector mounted at the focus halfway up the tube assembly, a small amount of light is blocked and there is a loss in contrast in the image due todiffraction effects of the obstruction and its support structure.[4]

ASchmidt corrector plate is anaspheric lens which corrects thespherical aberration introduced by the sphericalprimary mirror of theSchmidt orSchmidt–Cassegrain telescope designs. It was invented byBernhard Schmidt in 1931,[6] although it may have been independently invented by Finnish astronomerYrjö Väisälä in 1924 (sometimes called theSchmidt–Väisälä camera as a result).[7] Schmidt originally introduced it as part of a wide-field photographiccatadioptric telescope, the Schmidt camera. It is now used in several other telescope designs, camera lenses and image projection systems that utilise a spherical primary mirror.


Schmidt corrector plates work because they are aspheric lenses with spherical aberration that is equal to but opposite of the spherical primary mirrors they are placed in front of. They are placed at the center of curvature "C" of the mirrors for a pure Schmidt camera and just behind the prime focus for aSchmidt–Cassegrain. The Schmidt corrector is thicker in the middle and the edge. This corrects the light paths so light reflected from the outer part of the mirror and light reflected from the inner portion of the mirror is brought to the same common focus "F". The Schmidt corrector only corrects for spherical aberration. It does not change the focal length of the system.
Schmidt corrector plates can be manufactured in many ways. The most basic method, called the "classical approach",[8] involves directlyfiguring the corrector by grinding and polishing the aspherical shape into a flat glass blank using specially shaped and sized tools. This method requires a high degree of skill and training on the part of theoptical engineer creating the corrector.[8][9]
Schmidt himself worked out a second, more elegant, scheme for producing the complex figure needed for the correcting plate.[10] A thin glass disk with a perfectly polished accurate flat surface on both sides was placed on a heavy rigid metal pan. The top surface of the pan around the edge of the glass disk was ground at a precise angle orbevel based on thecoefficient of elasticity of the particular type of glass that was being used. The glass plate was sealed to the ground edge of the pan. Then avacuum pump was used to exhaust the air between the pan and glass through a small hole in the center of the pan until a particular negative pressure had been achieved. This caused the glass plate to warp slightly. The exposed upper surface of the glass was then ground and polished spherical.[8] When the vacuum was released, the lower surface of the plate returned to its original flat form while the upper surface had theaspheric figure needed for a Schmidt corrector plate. Schmidt's vacuum figuring method is rarely used today. Holding the shape by constant vacuum is difficult and errors in the o-ring seal and even contamination behind the plate could induce optical errors.[8] The glass plate could also break if bent enough to generate a curve for telescopes offocal ratio f/2.5 or faster.[11] Also, for fast focal ratios, the curve obtained is not sufficiently exact and requires additional hand correction.
A third method, invented in 1970 forCelestron by Tom Johnson and John O'rourke,[8][12] uses a vacuum pan with the correct shape of the curve pre-shaped into the bottom of the pan, called a "master block". The upper exposed surface is then polished flat creating a corrector with the correct shape once the vacuum is released.[8] This removes the need to have to hold a shape by applying an exact vacuum and allows for the mass production of corrector plates of the same exact shape.[9]
The technical difficulties associated with the production of Schmidt corrector plates led some designers, such asDmitri Dmitrievich Maksutov andAlbert Bouwers, to come up with alternative designs using more conventionalmeniscus corrector lenses.[13]

Because of its wide field of view, the Schmidt camera is typically used as a survey instrument, for research programs in which a large amount of sky must be covered. These includeastronomical surveys,comet andasteroid searches, andnova patrols.
In addition, Schmidt cameras and derivative designs are frequently used for tracking artificial Earthsatellites.
The first relatively large Schmidt telescopes were built atHamburg Observatory andPalomar Observatory shortly beforeWorld War II. Between 1945 and 1980, about eight more large (1 meter or larger) Schmidt telescopes were built around the world.[14]
One particularly famous and productive Schmidt camera is theOschin Schmidt Telescope atPalomar Observatory, completed in 1948. This instrument was used in theNational Geographic Society – Palomar Observatory Sky Survey (POSS, 1958), the POSS-II survey, the Palomar-Leiden (asteroid) Surveys, and other projects.
TheEuropean Southern Observatory with a 1-meter Schmidt telescope atLa Silla and the UKScience Research Council with a 1.2 meter Schmidt telescope at Siding Spring Observatory engaged in a collaborative sky survey to complement the first Palomar Sky Survey, but focusing on the southern hemisphere. The technical improvements developed during this survey encouraged the development of theSecond Palomar Observatory Sky Survey (POSS II).[15]
The telescope used in theLowell Observatory Near-Earth-Object Search (LONEOS) is also a Schmidt camera. The Schmidt telescope of theKarl Schwarzschild Observatory is the largest Schmidt camera of the world.
A Schmidt telescope was at the heart of theHipparcos (1989–1993) satellite from theEuropean Space Agency. This was used in the Hipparcos Survey which mapped the distances of more than a million stars with unprecedented accuracy: it included 99% of all stars up tomagnitude 11. The spherical mirror used in this telescope was extremely accurate; if scaled up to the size of theAtlantic Ocean, bumps on its surface would be about 10 cm high.[16]
TheKepler photometer, mounted on NASA'sKepler space telescope (2009–2018), is the largest Schmidt camera launched into space.
In 1977 atYerkes Observatory, a small Schmidt telescope was used to derive an accurate optical position for the planetary nebula NGC 7027 to allow comparison between photographs and radio maps of the object.[17]
Starting in the early 1970s,Celestron marketed an 8-inch Schmidt camera. The camera was focused in the factory and was made of materials with low expansion coefficients so it would never need to be focused in the field. Early models required the photographer to cut and develop individual frames of 35 mm film, as the film holder could only hold one frame of film. About 300 Celestron Schmidt cameras were produced.
The Schmidt system was popular, used in reverse, fortelevision projection systems, notably theAdvent design byHenry Kloss.[18] Large Schmidt projectors were used in theaters, but systems as small as 8 inches were made for home use and other small venues.
In the 1930s, Schmidt noted that the corrector plate could be replaced with a simple aperture at the mirror's center of curvature for a slow (numerically high f-ratio) camera. Such a design was used to construct a working 1/8-scale model of the Palomar Schmidt, with a 5° field.[19] Theretronym "lensless Schmidt" has been given to this configuration.
Yrjö Väisälä originally designed an "astronomical camera" similar to Bernhard Schmidt's "Schmidt camera", but the design was unpublished. Väisälä did mention it in lecture notes in 1924 with a footnote: "problematic spherical focal plane". Once Väisälä saw Schmidt's publication, he promptly went ahead and solved the field-flattening problem in Schmidt's design by placing a doubly convex lens slightly in front of the film holder. This resulting system is known as:Schmidt–Väisälä camera or sometimes asVäisälä camera.
In 1940,James Baker ofHarvard University modified the Schmidt camera design to include a convex secondary mirror, which reflected light back toward the primary. The photographic plate was then installed near the primary, facing the sky. This variant is called the Baker-Schmidt camera.

The Baker–Nunn design, by Baker andJoseph Nunn, replaces the Baker-Schmidt camera's corrector plate with a small triplet corrector lens closer to the focus of the camera. It used a 55 mm wide film derived from the Cinemascope 55 motion picture process.[20][21] A dozen f/0.75 Baker-Nunn cameras with 20-inch apertures – each weighing 3.5 tons including a multiple axis mount allowing it to follow satellites in the sky – were used by theSmithsonian Astrophysical Observatory to track artificial satellites from June 1958[22] until the mid-1970s.[23]
A few Baker-Nunn telescopes were repurposed for astronomical use after their satellite tracking days were over.[24]

The Mersenne–Schmidt camera consists of a concave paraboloidal primary mirror, a convex spherical secondary mirror, and a concave spherical tertiary mirror. The first two mirrors (a Mersenne configuration) perform the same function of the correcting plate of the conventional Schmidt. This form was invented by Paul in 1935.[26]A later paper by Baker[27]introduced the Paul-Baker design, a similar configuration but with a flat focal plane.[28]
The addition of a flatsecondary mirror at 45° to the optical axis of the Schmidt design creates aSchmidt–Newtonian telescope.
The addition of a convex secondary mirror to the Schmidt design directing light through a hole in the primary mirror creates aSchmidt–Cassegrain telescope.
The last two designs are popular with telescope manufacturers because they are compact and use simple spherical optics.
A short list of notable and/or large aperture Schmidt cameras.
| Selected Large Schmidt Cameras by Year | |||||||
| Observatory | Aperture | Year(s) | Note | ||||
|---|---|---|---|---|---|---|---|
| Palomar Observatory | 46 cm | 1936 | first in North America | ||||
| Palomar Observatory | 122 cm | 1948 | theSamuel Oschin telescope | ||||
| Hamburg Observatory | 80 cm | 1954 | Moved toCalar Alto Observatory in 1974 | ||||
| Karl Schwarzschild Observatory | 134 cm | 1960 | Largest aperture[29] | ||||
| Konkoly Observatory | 60 cm | 1962 | atPiszkéstető, Hungary | ||||
| Kvistaberg Observatory | 100 cm | 1963 | Largest in Scandinavia[30] | ||||
| La Silla Observatory | 100 cm | 1971 | ESO[31] | ||||
| Siding Spring Observatory | 120 cm | 1973 | theUK Schmidt Telescope | ||||
| Kepler space telescope | 95 cm | 2009 | theKepler photometer, largest in space | ||||