Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Schmidt number

From Wikipedia, the free encyclopedia
Ratio of a fluid's kinematic viscosity to mass diffusivity
For the measure of thequantum entanglement of adensity matrix, seeSchmidt decomposition.

Influid dynamics, theSchmidt number (denotedSc) of afluid is adimensionless number defined as theratio ofmomentum diffusivity (kinematic viscosity) andmass diffusivity, and it is used to characterize fluid flows in which there are simultaneous momentum and mass diffusionconvection processes. It was named after German engineerErnst Heinrich Wilhelm Schmidt (1892–1975).

The Schmidt number is the ratio of theshear component for diffusivity (viscosity divided bydensity) to the diffusivity for mass transferD. It physically relates the relative thickness of the hydrodynamic layer and mass-transferboundary layer.[1]

It is defined[2] as:

Sc=νD=μρD=viscous diffusion ratemolecular (mass) diffusion rate=PeRe{\displaystyle \mathrm {Sc} ={\frac {\nu }{D}}={\frac {\mu }{\rho D}}={\frac {\mbox{viscous diffusion rate}}{\mbox{molecular (mass) diffusion rate}}}={\frac {\mathrm {Pe} }{\mathrm {Re} }}}

where (inSI units):

Theheat transfer analog of the Schmidt number is thePrandtl number (Pr). The ratio ofthermal diffusivity tomass diffusivity is theLewis number (Le).

Turbulent Schmidt Number

[edit]

The turbulent Schmidt number is commonly used in turbulence research and is defined as:[3]

Sct=νtK{\displaystyle \mathrm {Sc} _{\mathrm {t} }={\frac {\nu _{\mathrm {t} }}{K}}}

where:

The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar). It is related to theturbulent Prandtl number, which is concerned with turbulent heat transfer rather than turbulent mass transfer. It is useful for solving the mass transfer problem of turbulent boundary layer flows. The simplest model for Sct is the Reynolds analogy, which yields a turbulent Schmidt number of 1. From experimental data and CFD simulations, Sct ranges from 0.2 to 6.[4][5][6][7][8]

Stirling engines

[edit]

ForStirling engines, the Schmidt number is related to thespecific power.Gustav Schmidt of the German Polytechnic Institute of Prague published an analysis in 1871 for the now-famousclosed-form solution for an idealized isothermal Stirling engine model.[9][10]

Sc=|Q|p¯Vsw{\displaystyle \mathrm {Sc} ={\frac {\sum {\left|{Q}\right|}}{{\bar {p}}V_{sw}}}}

where:

References

[edit]
  1. ^tec-science (2020-05-10)."Schmidt number".tec-science. Retrieved2020-06-25.
  2. ^Incropera, Frank P.; DeWitt, David P. (1990),Fundamentals of Heat and Mass Transfer (3rd ed.),John Wiley & Sons, p. 345,ISBN 978-0-471-51729-0 Eq. 6.71.
  3. ^Brethouwer, G. (2005)."The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulation".J. Fluid Mech.542:305–342.Bibcode:2005JFM...542..305B.doi:10.1017/s0022112005006427 (inactive 2024-11-21).S2CID 120121519.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  4. ^Colli, A. N.; Bisang, J. M. (January 2018). "A CFD Study with Analytical and Experimental Validation of Laminar and Turbulent Mass-Transfer in Electrochemical Reactors".Journal of the Electrochemical Society.165 (2):E81 –E88.doi:10.1149/2.0971802jes.hdl:11336/90612.
  5. ^Colli, A. N.; Bisang, J. M. (July 2019). "Time-dependent mass-transfer behaviour under laminar and turbulent flow conditions in rotating electrodes: A CFD study with analytical and experimental validation".International Journal of Heat and Mass Transfer.137:835–846.Bibcode:2019IJHMT.137..835C.doi:10.1016/j.ijheatmasstransfer.2019.03.152.S2CID 132955462.
  6. ^Colli, A. N.; Bisang, J. M. (January 2020). "Coupling k Convection-Diffusion and Laplace Equations in an Open-Source CFD Model for Tertiary Current Distribution Calculations".Journal of the Electrochemical Society.167: 013513.doi:10.1149/2.0132001JES.hdl:11336/150891.S2CID 208732876.
  7. ^Contigiani, C. C.; Colli, A. N.; González Pérez, O.; Bisang, J. M. (April 2020). "The Effect of a Conical Inner Electrode on the Mass-transfer Behavior in a Cylindrical Electrochemical Reactor under Single-Phase and Two-Phase (Gas-Liquid) Swirling Flow".Journal of the Electrochemical Society.167 (8): 083501.Bibcode:2020JElS..167h3501C.doi:10.1149/1945-7111/ab8477.S2CID 219085593.
  8. ^Donzis, D. A.; Aditya, K.; Sreenivasan, K. R.; Yeung, P. K. (2014). "The Turbulent Schmidt Number".Journal of Fluids Engineering.136 (6):https://doi.org/10.1115/1.4026619.doi:10.1115/1.4026619.
  9. ^Schmidt Analysis (updated 12/05/07)Archived 2008-05-18 at theWayback Machine
  10. ^"Archived copy". Archived fromthe original on 2009-04-26. Retrieved2008-04-29.{{cite web}}: CS1 maint: archived copy as title (link)
Retrieved from "https://en.wikipedia.org/w/index.php?title=Schmidt_number&oldid=1258706702"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp