Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Samarium(II) iodide

From Wikipedia, the free encyclopedia
Samarium(II) iodide
Ball-and-stick model of a samarium(II) iodide-THF complex
Ball-and-stick model of a samarium(II) iodide-THF complex
Names
IUPAC name
samarium(II) iodide
Other names
samarium diiodide
Identifiers
3D model (JSmol)
ChemSpider
UNII
  • InChI=1S/2HI.Sm/h2*1H;/q;;+2/p-2 checkY
    Key: UAWABSHMGXMCRK-UHFFFAOYSA-L checkY
  • InChI=1/2HI.Sm/h2*1H;/q;;+2/p-2
    Key: UAWABSHMGXMCRK-NUQVWONBAD
  • I[Sm]I
Properties
SmI2
Molar mass404.16 g/mol
Appearancegreen solid
Melting point520 °C (968 °F; 793 K)
Hazards
Flash pointNon-flammable
Related compounds
Otheranions
Samarium(II) chloride
Samarium(II) bromide
Othercations
Samarium(III) iodide
Europium(II) iodide
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Samarium(II) iodide is aninorganic compound with the formula SmI2. When employed as a solution fororganic synthesis, it is known asKagan's reagent, named afterHenri B. Kagan. SmI2 is a green solid and forms a dark blue solution inTHF.[1] It is a strong one-electronreducing agent that is used inorganic synthesis.

Structure

[edit]

In solid samarium(II) iodide, the metal centers are seven-coordinate with a face-cappedoctahedral geometry.[2]

Structure of the samarium(II) iodide-tetrahydrofuran complex

In itsether adducts, samarium remains heptacoordinate with five ether and two terminal iodide ligands.[3]

Preparation

[edit]

Samarium iodide is easily prepared in nearly quantitative yields from samarium metal usingdiiodomethane,1,2-diiodoethane, or moleculariodine, typically usingTHF as solvent.[4] The resulting solutions are most often used directly, without isolation of the inorganic reagent itself.

Sm + ICH2I → SmI2 + 0.5 H2C=CH2
Sm + I(CH2)2I → SmI2 + H2C=CH2
Sm + I2 → SmI2


Solid, solvent-free SmI2 forms by high temperaturedecomposition ofsamarium(III) iodide (SmI3).[5][6][7]

Reactions

[edit]

Samarium(II) iodide is a powerfulreducing agent – for example it rapidly reduceswater tohydrogen.[2] It is available commercially as a dark blue 0.1M solution in THF. Although used typically in superstoichiometric amounts, catalytic applications have been described.[8]

Organic chemistry

[edit]
Main article:Reductions with samarium(II) iodide

Samarium(II) iodide is a reagent forcarbon-carbon bond formation, for example in aBarbier reaction (similar to theGrignard reaction) between aketone and an alkyl iodide to form atertiary alcohol:[9]

R1I + R2COR3 → R1R2C(OH)R3
Barbier reaction using SmI2

Typical reaction conditions use SmI2 in THF in the presence of catalytic NiI2.

Esters react similarly (adding two R groups), butaldehydes give by-products. The reaction is convenient in that it is often very rapid (5 minutes or less in the cold). Although samarium(II) iodide is considered a powerful single-electron reducing agent, it does display remarkablechemoselectivity among functional groups. For example,sulfones andsulfoxides can be reduced to the correspondingsulfide in the presence of a variety ofcarbonyl-containing functionalities (such asesters,ketones,amides,aldehydes, etc.). This is presumably due to the considerably slower reaction withcarbonyls as compared tosulfones andsulfoxides. Furthermore, hydrodehalogenation of halogenatedhydrocarbons to the correspondinghydrocarbon compound can be achieved using samarium(II) iodide. Also, it can be monitored by the color change that occurs as the dark blue color of SmI2 in THF discharges to a light yellow once the reaction has occurred. The picture shows the dark colour disappearing immediately upon contact with theBarbier reaction mixture.

Work-up is with dilutehydrochloric acid, and the samarium is removed as aqueous Sm3+.

Carbonyl compounds can also be coupled with simple alkenes to form five, six or eight membered rings.[10]

Tosyl groups can be removed fromN-tosylamides almost instantaneously, using SmI2 in conjunction with distilled water and an amine base. The reaction is even effective for deprotection of sensitive substrates such asaziridines:[11]

Removal of a tosyl group from anN-tosylamide using SmI2

In theMarkó-Lam deoxygenation, an alcohol could be almost instantaneously deoxygenated by reducing their toluate ester in presence of SmI2.

Markó-Lam deoxygenation using SmI2

SmI2 can also be used in thetransannulation ofbicyclic molecules. An example is the SmI2 inducedketone -alkenecyclization of 5-methylenecyclooctanone which proceeds through aketyl intermediate:

Ketone olefin cyclization

The applications of SmI2 have been reviewed.[12][13][14] The bookOrganic Synthesis Using Samarium Diiodide, published in 2009, gives a detailed overview of reactions mediated by SmI2.[15]

References

[edit]
  1. ^"SAFETY DATA SHEET - Samarium(II) iodide solution".www.sigmaaldrich.com.
  2. ^abGreenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann.doi:10.1016/C2009-0-30414-6.ISBN 978-0-08-037941-8.
  3. ^William J. Evans; Tammy S. Gummersheimer & Joseph W. Ziller (1995). "Coordination Chemistry of Samarium Diiodide with Ethers Including the Crystal Structure of Tetrahydrofuran-Solvated Samarium Diiodide, SmI2(THF)5".J. Am. Chem. Soc.117 (35):8999–9002.Bibcode:1995JAChS.117.8999E.doi:10.1021/ja00140a016.
  4. ^Szostak, Michal; Spain, Malcolm; Procter, David J. (2012). "Preparation of Samarium(II) Iodide: Quantitative Evaluation of the Effect of Water, Oxygen, and Peroxide Content, Preparative Methods, and the Activation of Samarium Metal".The Journal of Organic Chemistry.77 (7):3049–3059.doi:10.1021/jo300135v.PMID 22375820.
  5. ^G. Jantsch, N. Skalla: "Zur Kenntnis der Halogenide der seltenen Erden. IV. – Über Samarium(II)jodid und den thermischen Abbau des Samarium(III)jodids",Zeitschrift für Allgemeine und Anorganische Chemie,1930,193, 391–405;doi:10.1002/zaac.19301930132.
  6. ^G. Jantsch: "Thermischer Abbau von seltenen Erd(III)halogeniden",Die Naturwissenschaften,1930,18 (7), 155–155;doi:10.1007/BF01501667.
  7. ^Gmelins Handbuch der anorganischen Chemie, System Nr. 39, Band C 6, p. 192–194.
  8. ^Huang, Huan-Ming; McDouall, Joseph J. W.; Procter, David J. (2019)."SmI2-catalysed cyclization cascades by radical relay".Nature Catalysis.2 (3):211–218.doi:10.1038/s41929-018-0219-x.S2CID 104423773.
  9. ^Machrouhi, Fouzia; Hamann, Béatrice; Namy, Jean-Louis; Kagan, Henri B. (1996). "Improved Reactivity of Diiodosamarium by Catalysis with Transition Metal Salts".Synlett.1996 (7):633–634.doi:10.1055/s-1996-5547.S2CID 196761752.
  10. ^Molander, G. A.; McKiie, J. A. (1992). "Samarium(II) iodide-induced reductive cyclization of unactivated olefinic ketones. Sequential radical cyclization/intermolecular nucleophilic addition and substitution reactions".J. Org. Chem.57 (11):3132–3139.doi:10.1021/jo00037a033.
  11. ^Ankner, Tobias; Göran Hilmersson (2009). "Instantaneous Deprotection of Tosylamides and Esters with SmI2/Amine/Water".Organic Letters.11 (3). American Chemical Society:503–506.doi:10.1021/ol802243d.PMID 19123840.
  12. ^Patrick G. Steel (2001). "Recent developments in lanthanide mediated organic synthesis".J. Chem. Soc., Perkin Trans. 1 (21):2727–2751.doi:10.1039/a908189e.
  13. ^Molander, G. A.; Harris, C. R. (1996). "Sequencing Reactions with Samarium(II) Iodide".Chem. Rev.96 (1):307–338.doi:10.1021/cr950019y.PMID 11848755.
  14. ^K. C. Nicolaou; Shelby P. Ellery; Jason S. Chen (2009)."Samarium Diiodide Mediated Reactions in Total Synthesis".Angew. Chem. Int. Ed.48 (39):7140–7165.doi:10.1002/anie.200902151.PMC 2771673.PMID 19714695.
  15. ^Procter, David J.; Flowers,II, Robert A.; Skydstrup, Troels (2009).Organic Synthesis Using Samarium Diiodide. Royal Society of Chemistry.ISBN 978-1-84755-110-8.
Samarium(II)
Samarium(III)
Organosamarium(III)
Salts and covalent derivatives of theiodide ion
Retrieved from "https://en.wikipedia.org/w/index.php?title=Samarium(II)_iodide&oldid=1319812402"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp