Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

SUCLA2

From Wikipedia, the free encyclopedia
Protein-coding gene in the species Homo sapiens
SUCLA2
Identifiers
AliasesSUCLA2, A-BETA, MTDPS5, SCS-betaA, succinate-CoA ligase ADP-forming beta subunit, A-SCS, succinate-CoA ligase ADP-forming subunit beta, LINC00444
External IDsOMIM:603921;MGI:1306775;HomoloGene:2856;GeneCards:SUCLA2;OMA:SUCLA2 - orthologs
Gene location (Human)
Chromosome 13 (human)
Chr.Chromosome 13 (human)[1]
Chromosome 13 (human)
Genomic location for SUCLA2
Genomic location for SUCLA2
Band13q14.2Start47,745,736bp[1]
End48,037,968bp[1]
Gene location (Mouse)
Chromosome 14 (mouse)
Chr.Chromosome 14 (mouse)[2]
Chromosome 14 (mouse)
Genomic location for SUCLA2
Genomic location for SUCLA2
Band14|14 D3Start73,762,759bp[2]
End73,833,582bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • jejunal mucosa

  • pons

  • lateral nuclear group of thalamus

  • body of tongue

  • vastus lateralis muscle

  • biceps brachii

  • right ventricle

  • Skeletal muscle tissue of rectus abdominis

  • thoracic diaphragm

  • myocardium of left ventricle
Top expressed in
  • atrioventricular valve

  • intercostal muscle

  • seminiferous tubule

  • spermatid

  • facial motor nucleus

  • cardiac muscle tissue of left ventricle

  • vastus lateralis muscle

  • masseter muscle

  • triceps brachii muscle

  • extraocular muscle
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo /QuickGO
Orthologs
SpeciesHumanMouse
Entrez

8803

20916

Ensembl

ENSG00000136143

ENSMUSG00000022110

UniProt

Q9P2R7
Q5T9Q8

Q9Z2I9

RefSeq (mRNA)

NM_003850

NM_011506
NM_001361638

RefSeq (protein)

NP_003841

NP_035636
NP_001348567

Location (UCSC)Chr 13: 47.75 – 48.04 MbChr 14: 73.76 – 73.83 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial (SUCLA2), also known as ADP-forming succinyl-CoA synthetase (SCS-A), is anenzyme that in humans is encoded by theSUCLA2gene on chromosome 13.[5][6][7]

Succinyl-CoA synthetase (SCS) is amitochondrial matrix enzyme that acts as aheterodimer, composed of an invariant alphasubunit and asubstrate-specific beta subunit. The protein encoded by this gene is anATP-specific SCS beta subunit that dimerizes with the SCS alpha subunit to form SCS-A, an essential component of thetricarboxylic acid cycle. SCS-Ahydrolyzes ATP to convertsuccinyl-CoA tosuccinate. Defects in this gene are a cause ofmyopathicmitochondrial DNA depletion syndrome. Apseudogene of this gene has been found on chromosome 6. [provided by RefSeq, Jul 2008][6]

Structure

[edit]

SCS, also known as succinyl CoA ligase (SUCL), is a heterodimer composed of a catalytic α subunit encoded by theSUCLG1 gene and a β subunit encoded by either theSUCLA2 gene or theSUCLG2 gene, which determines the enzyme specificity for either ADP or GDP. SUCLA2 is the SCS variant containing theSUCLA2-encoded β subunit.[8][9][10]Amino acid sequence alignment of the two β subunit types reveals a homology of ~50% identity, with specific regions conserved throughout the sequences.[5]

SUCLA2 is located on chromosome 13 and contains 13exons.[6]

Function

[edit]

As a subunit of SCS, SUCLA2 is a mitochondrial matrix enzyme that catalyzes the reversible conversion of succinyl-CoA to succinate andAcetoacetyl CoA, accompanied by thesubstrate-level phosphorylation of ADP to ATP, as a step in the tricarboxylic acid (TCA) cycle.[8][9][10] The ATP generated is then consumed incatabolic pathways.[9] Since substrate-level phosphorylation does not require oxygen for ATP production, this reaction can rescue cells from cytosolic ATP depletion duringischemia.[10] The reverse reaction generates succinyl-CoA from succinate to fuelketone body andheme synthesis.[8][10]

While SCS is ubiquitously expressed, SUCLA2 is predominantly expressed in catabolic tissues reliant on ATP as their main energy source, including theheart,brain, andskeletal muscle.[5][7][10] Within the brain, SUCLA2 is found exclusively inneurons; meanwhile, both SUCLA2 and SUCLG2 are absent inastrocytes,microglia, andoligodendrocytes. In order to acquire succinate to continue the TCA cycle, these cells may instead synthesize succinate throughGABAmetabolism ofα-ketoglutarate or ketone body metabolism of succinyl-CoA.[9][10]

Clinical significance

[edit]

Mutations in the SUCLA2 gene are associated withmitochondrial DNA (mtDNA) depletion syndrome.[11][12] Symptoms include early-onsetlow muscle tone, severe muscular atrophy,scoliosis, movement disorders such asdystonia andhyperkinesia,epilepsy, and growth retardation. Because succinic acid cannot be made from succinyl coa, treatment is with oral succinic acid, which allows the Krebs cycle and electron transport chain to function correctly. Other treatments for managing symptoms include exercises to promote mobility and respiratory assistance,baclofen to treatdystonia andhyperkinesia, and antiepileptic drugs for seizures.[11][13]

There is a relatively high incidence of a specific SUCLA2 mutation in theFaroe Islands due to afounder effect. This particular mutation is often associated with early lethality.[14] Two additional founder mutations have been discovered in the Scandinavian population, in addition to the known SUCLA2 founder mutation in the Faroe Islands.[15] These patients show a higher variability in outcomes with several patients with SUCLA2missense mutation surviving into adulthood. This variability suggests that SUCLA2 missense mutations may be associated with residual enzyme activity.[15]

Coenzyme Q10 and antioxidants have been used to treat mitochondrial DNA depletion syndrome, but there is currently no evidence that these treatments result in clinical benefit.[13][16]

Mutations in theSUCLA2 gene leading to SUCLA2 deficiency result inLeigh's or a Leigh-like syndrome with the onset of severehypotonia,muscular atrophy, sensorineural hearing impairment, and often death in early childhood.[8][10]

See also

[edit]

References

[edit]
  1. ^abcGRCh38: Ensembl release 89: ENSG00000136143Ensembl, May 2017
  2. ^abcGRCm38: Ensembl release 89: ENSMUSG00000022110Ensembl, May 2017
  3. ^"Human PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^"Mouse PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^abcJohnson JD, Mehus JG, Tews K, Milavetz BI, Lambeth DO (October 1998)."Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes".The Journal of Biological Chemistry.273 (42):27580–6.doi:10.1074/jbc.273.42.27580.PMID 9765291.
  6. ^abc"Entrez Gene: SUCLA2 succinate-CoA ligase, ADP-forming, beta subunit".
  7. ^abMatilainen S, Isohanni P, Euro L, Lönnqvist T, Pihko H, Kivelä T, Knuutila S, Suomalainen A (March 2015)."Mitochondrial encephalomyopathy and retinoblastoma explained by compound heterozygosity of SUCLA2 point mutation and 13q14 deletion".European Journal of Human Genetics.23 (3):325–30.doi:10.1038/ejhg.2014.128.PMC 4326715.PMID 24986829.
  8. ^abcdMiller C, Wang L, Ostergaard E, Dan P, Saada A (May 2011)."The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion"(PDF).Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.1812 (5):625–9.doi:10.1016/j.bbadis.2011.01.013.PMID 21295139.
  9. ^abcdDobolyi A, Bagó AG, Gál A, Molnár MJ, Palkovits M, Adam-Vizi V, Chinopoulos C (April 2015)."Localization of SUCLA2 and SUCLG2 subunits of succinyl CoA ligase within the cerebral cortex suggests the absence of matrix substrate-level phosphorylation in glial cells of the human brain"(PDF).Journal of Bioenergetics and Biomembranes.47 (1–2):33–41.doi:10.1007/s10863-014-9586-4.PMID 25370487.S2CID 41101828.
  10. ^abcdefgDobolyi A, Ostergaard E, Bagó AG, Dóczi T, Palkovits M, Gál A, Molnár MJ, Adam-Vizi V, Chinopoulos C (January 2015)."Exclusive neuronal expression of SUCLA2 in the human brain"(PDF).Brain Structure & Function.220 (1):135–51.doi:10.1007/s00429-013-0643-2.PMID 24085565.S2CID 105582.
  11. ^abOstergaard E (May 2009)."SUCLA2-Related Mitochondrial DNA Depletion Syndrome, Encephalomyopathic Form, with Mild Methylmalonic Acuduria". In Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJ, Bird TD, Fong CT, Mefford HC, Smith RJ, Stephens K (eds.).GeneReviews [Internet]. Seattle: University of Washington, Seattle.PMID 20301762.
  12. ^El-Hattab AW, Scaglia F (April 2013)."Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options". review.Neurotherapeutics.10 (2):186–98.doi:10.1007/s13311-013-0177-6.PMC 3625391.PMID 23385875.
  13. ^abParikh S, Saneto R, Falk MJ, Anselm I, Cohen BH, Haas R, Medicine Society TM (November 2009)."A modern approach to the treatment of mitochondrial disease". primary source.Current Treatment Options in Neurology.11 (6):414–30.doi:10.1007/s11940-009-0046-0.PMC 3561461.PMID 19891905.
  14. ^Ostergaard E, Hansen FJ, Sorensen N, Duno M, Vissing J, Larsen PL, Faeroe O, Thorgrimsson S, Wibrand F, Christensen E, Schwartz M (March 2007)."Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations". primary source.Brain.130 (Pt 3):853–61.CiteSeerX 10.1.1.321.3705.doi:10.1093/brain/awl383.PMID 17287286.
  15. ^abCarrozzo R, Verrigni D, Rasmussen M, de Coo R, Amartino H, Bianchi M, Buhas D, Mesli S, Naess K, Born AP, Woldseth B, Prontera P, Batbayli M, Ravn K, Joensen F, Cordelli DM, Santorelli FM, Tulinius M, Darin N, Duno M, Jouvencel P, Burlina A, Stangoni G, Bertini E, Redonnet-Vernhet I, Wibrand F, Dionisi-Vici C, Uusimaa J, Vieira P, Osorio AN, McFarland R, Taylor RW, Holme E, Ostergaard E (March 2016). "Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients". primary source.Journal of Inherited Metabolic Disease.39 (2):243–52.doi:10.1007/s10545-015-9894-9.PMID 26475597.S2CID 7881205.
  16. ^Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF (April 2012)."Treatment for mitochondrial disorders". review.The Cochrane Database of Systematic Reviews.4 (4) CD004426.doi:10.1002/14651858.CD004426.pub3.PMC 7201312.PMID 22513923.

Further reading

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=SUCLA2&oldid=1317065435"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp