Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Root test

From Wikipedia, the free encyclopedia
Criterion for the convergence of an infinite series
Part of a series of articles about
Calculus
abf(t)dt=f(b)f(a){\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}

Inmathematics, theroot test is a criterion for theconvergence (aconvergence test) of aninfinite series. It depends on the quantity

lim supn|an|n,{\displaystyle \limsup _{n\rightarrow \infty }{\sqrt[{n}]{|a_{n}|}},}

wherean{\displaystyle a_{n}} are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one. It is particularly useful in connection withpower series.

Root test explanation

[edit]
Decision diagram for the root test

The root test was developed first byAugustin-Louis Cauchy who published it in his textbookCours d'analyse (1821).[1] Thus, it is sometimes known as theCauchy root test orCauchy's radical test. For a series

n=1an{\displaystyle \sum _{n=1}^{\infty }a_{n}}

the root test uses the number

C=lim supn|an|n,{\displaystyle C=\limsup _{n\rightarrow \infty }{\sqrt[{n}]{|a_{n}|}},}

where "lim sup" denotes thelimit superior, possibly +∞. Note that if

limn|an|n,{\displaystyle \lim _{n\rightarrow \infty }{\sqrt[{n}]{|a_{n}|}},}

converges then it equalsC and may be used in the root test instead.

The root test states that:

  • ifC < 1 then the seriesconverges absolutely,
  • ifC > 1 then the seriesdiverges,
  • ifC = 1 and the limit approaches strictly from above then the series diverges,
  • otherwise the test is inconclusive (the series may diverge, converge absolutely orconverge conditionally).

There are some series for whichC = 1 and the series converges, e.g.1/n2{\displaystyle \textstyle \sum 1/{n^{2}}}, and there are others for whichC = 1 and the series diverges, e.g.1/n{\displaystyle \textstyle \sum 1/n}.

Application to power series

[edit]

This test can be used with apower series

f(z)=n=0cn(zp)n{\displaystyle f(z)=\sum _{n=0}^{\infty }c_{n}(z-p)^{n}}

where the coefficientscn, and the centerp arecomplex numbers and the argumentz is a complex variable.

The terms of this series would then be given byan =cn(zp)n. One then applies the root test to thean as above. Note that sometimes a series like this is called a power series "aroundp", because theradius of convergence is the radiusR of the largest interval or disc centred atp such that the series will converge for all pointsz strictly in the interior (convergence on the boundary of the interval or disc generally has to be checked separately).

Acorollary of the root test applied to a power series is theCauchy–Hadamard theorem: the radius of convergence is exactly1/lim supn|cn|n,{\displaystyle 1/\limsup _{n\rightarrow \infty }{\sqrt[{n}]{|c_{n}|}},} taking care that we really mean ∞ if the denominator is 0.

Proof

[edit]

The proof of the convergence of a series Σan is an application of thecomparison test.

If for allnN (N some fixednatural number) we have|an|nk<1{\displaystyle {\sqrt[{n}]{|a_{n}|}}\leq k<1}, then|an|kn<1{\displaystyle |a_{n}|\leq k^{n}<1}. Since thegeometric seriesn=Nkn{\displaystyle \sum _{n=N}^{\infty }k^{n}} converges so doesn=N|an|{\displaystyle \sum _{n=N}^{\infty }|a_{n}|} by the comparison test. Hence Σan converges absolutely.

If|an|n>1{\displaystyle {\sqrt[{n}]{|a_{n}|}}>1} for infinitely manyn, thenan fails to converge to 0, hence the series is divergent.

Proof of corollary: For a power series Σan = Σcn(z − p)n, we see by the above that the series converges if there exists anN such that for allnN we have

|an|n=|cn(zp)n|n<1,{\displaystyle {\sqrt[{n}]{|a_{n}|}}={\sqrt[{n}]{|c_{n}(z-p)^{n}|}}<1,}

equivalent to

|cn|n|zp|<1{\displaystyle {\sqrt[{n}]{|c_{n}|}}\cdot |z-p|<1}

for allnN, which implies that in order for the series to converge we must have|zp|<1/|cn|n{\displaystyle |z-p|<1/{\sqrt[{n}]{|c_{n}|}}} for all sufficiently largen. This is equivalent to saying

|zp|<1/lim supn|cn|n,{\displaystyle |z-p|<1/\limsup _{n\rightarrow \infty }{\sqrt[{n}]{|c_{n}|}},}

soR1/lim supn|cn|n.{\displaystyle R\leq 1/\limsup _{n\rightarrow \infty }{\sqrt[{n}]{|c_{n}|}}.} Now the only other place where convergence is possible is when

|an|n=|cn(zp)n|n=1,{\displaystyle {\sqrt[{n}]{|a_{n}|}}={\sqrt[{n}]{|c_{n}(z-p)^{n}|}}=1,}

(since points > 1 will diverge) and this will not change the radius of convergence since these are just the points lying on the boundary of the interval or disc, so

R=1/lim supn|cn|n.{\displaystyle R=1/\limsup _{n\rightarrow \infty }{\sqrt[{n}]{|c_{n}|}}.}

Examples

[edit]

Example 1:

i=12ii9{\displaystyle \sum _{i=1}^{\infty }{\frac {2^{i}}{i^{9}}}}

Applying the root test and using the fact thatlimnn1/n=1,{\displaystyle \lim _{n\to \infty }n^{1/n}=1,}

C=limn|2nn9|n=limn2nnn9n=limn2(n1/n)9=2{\displaystyle C=\lim _{n\to \infty }{\sqrt[{n}]{\left|{\frac {2^{n}}{n^{9}}}\right|}}=\lim _{n\to \infty }{\frac {\sqrt[{n}]{2^{n}}}{\sqrt[{n}]{n^{9}}}}=\lim _{n\to \infty }{\frac {2}{(n^{1/n})^{9}}}=2}

SinceC=2>1,{\displaystyle C=2>1,} the series diverges.[2]

Example 2:

n=012n/2=1+1+12+12+14+14+18+18+{\displaystyle \sum _{n=0}^{\infty }{\frac {1}{2^{\lfloor n/2\rfloor }}}=1+1+{\frac {1}{2}}+{\frac {1}{2}}+{\frac {1}{4}}+{\frac {1}{4}}+{\frac {1}{8}}+{\frac {1}{8}}+\ldots }

The root test shows convergence because

r=lim supn|an|n=lim supn|a2n|2n=lim supn|1/2n|2n=12<1.{\displaystyle r=\limsup _{n\to \infty }{\sqrt[{n}]{|a_{n}|}}=\limsup _{n\to \infty }{\sqrt[{2n}]{|a_{2n}|}}=\limsup _{n\to \infty }{\sqrt[{2n}]{|1/2^{n}|}}={\frac {1}{\sqrt {2}}}<1.}

This example shows how the root test is stronger than theratio test. The ratio test is inconclusive for this series as ifn{\displaystyle n} is even,an+1/an=1{\displaystyle a_{n+1}/a_{n}=1} while ifn{\displaystyle n} is odd,an+1/an=1/2{\displaystyle a_{n+1}/a_{n}=1/2}, therefore the limitlimn|an+1/an|{\displaystyle \lim _{n\to \infty }|a_{n+1}/a_{n}|} does not exist.

Root tests hierarchy

[edit]

Root tests hierarchy[3][4] is built similarly to the ratio tests hierarchy (see Section 4.1 ofratio test, and more specifically Subsection 4.1.4 there).

For a seriesn=1an{\displaystyle \sum _{n=1}^{\infty }a_{n}} with positive terms we have the following tests for convergence/divergence.

LetK1{\displaystyle K\geq 1} be an integer, and letln(K)(x){\displaystyle \ln _{(K)}(x)} denote theK{\displaystyle K}thiterate ofnatural logarithm, i.e.ln(1)(x)=ln(x){\displaystyle \ln _{(1)}(x)=\ln(x)} and for any2kK{\displaystyle 2\leq k\leq K},ln(k)(x)=ln(k1)(ln(x)){\displaystyle \ln _{(k)}(x)=\ln _{(k-1)}(\ln(x))}.

Suppose thatann{\displaystyle {\sqrt[{-n}]{a_{n}}}}, whenn{\displaystyle n} is large, can be presented in the form

ann=1+1n+1ni=1K11k=1iln(k)(n)+ρnnk=1Kln(k)(n).{\displaystyle {\sqrt[{-n}]{a_{n}}}=1+{\frac {1}{n}}+{\frac {1}{n}}\sum _{i=1}^{K-1}{\frac {1}{\prod _{k=1}^{i}\ln _{(k)}(n)}}+{\frac {\rho _{n}}{n\prod _{k=1}^{K}\ln _{(k)}(n)}}.}

(The empty sum is assumed to be 0.)

Proof

[edit]

Sinceann=e1nlnan{\displaystyle {\sqrt[{-n}]{a_{n}}}=\mathrm {e} ^{-{\frac {1}{n}}\ln a_{n}}}, then we have

e1nlnan=1+1n+1ni=1K11k=1iln(k)(n)+ρnnk=1Kln(k)(n).{\displaystyle \mathrm {e} ^{-{\frac {1}{n}}\ln a_{n}}=1+{\frac {1}{n}}+{\frac {1}{n}}\sum _{i=1}^{K-1}{\frac {1}{\prod _{k=1}^{i}\ln _{(k)}(n)}}+{\frac {\rho _{n}}{n\prod _{k=1}^{K}\ln _{(k)}(n)}}.}

From this,

lnan=nln(1+1n+1ni=1K11k=1iln(k)(n)+ρnnk=1Kln(k)(n)).{\displaystyle \ln a_{n}=-n\ln \left(1+{\frac {1}{n}}+{\frac {1}{n}}\sum _{i=1}^{K-1}{\frac {1}{\prod _{k=1}^{i}\ln _{(k)}(n)}}+{\frac {\rho _{n}}{n\prod _{k=1}^{K}\ln _{(k)}(n)}}\right).}

From Taylor's expansion applied to the right-hand side, we obtain:

lnan=1i=1K11k=1iln(k)(n)ρnk=1Kln(k)(n)+O(1n).{\displaystyle \ln a_{n}=-1-\sum _{i=1}^{K-1}{\frac {1}{\prod _{k=1}^{i}\ln _{(k)}(n)}}-{\frac {\rho _{n}}{\prod _{k=1}^{K}\ln _{(k)}(n)}}+O\left({\frac {1}{n}}\right).}

Hence,

an={e1+O(1/n)1(nk=1K2ln(k)n)ln(K1)ρnn,K2,e1+O(1/n)1nρn,K=1.{\displaystyle a_{n}={\begin{cases}\mathrm {e} ^{-1+O(1/n)}{\frac {1}{(n\prod _{k=1}^{K-2}\ln _{(k)}n)\ln _{(K-1)}^{\rho _{n}}n}},&K\geq 2,\\\mathrm {e} ^{-1+O(1/n)}{\frac {1}{n^{\rho _{n}}}},&K=1.\end{cases}}}

(The empty product is set to 1.)

The final result follows from theintegral test for convergence.

See also

[edit]

References

[edit]
  1. ^Bottazzini, Umberto (1986),The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, pp. 116–117,ISBN 978-0-387-96302-0. Translated from the Italian by Warren Van Egmond.
  2. ^Briggs, William; Cochrane, Lyle (2011).Calculus: Early Transcendentals. Addison Wesley. p. 571.
  3. ^Abramov, Vyacheslav M. (2022)."Necessary and sufficient conditions for the convergence of positive series"(PDF).Journal of Classical Analysis.19 (2): 117--125.arXiv:2104.01702.doi:10.7153/jca-2022-19-09.
  4. ^Bourchtein, Ludmila; Bourchtein, Andrei; Nornberg, Gabrielle; Venzke, Cristiane (2012)."A hierarchy of convergence tests related to Cauchy's test"(PDF).International Journal of Mathematical Analysis.6 (37--40): 1847--1869.

This article incorporates material from Proof of Cauchy's root test onPlanetMath, which is licensed under theCreative Commons Attribution/Share-Alike License.

Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Root_test&oldid=1239962173"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp