Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Ring of integers

From Wikipedia, the free encyclopedia
Algebraic construction
Algebraic structure → Ring theory
Ring theory

Inmathematics, thering of integers of analgebraic number fieldK{\displaystyle K} is thering of allalgebraic integers contained inK{\displaystyle K}.[1] An algebraic integer is aroot of amonic polynomial withintegercoefficients:xn+cn1xn1++c0{\displaystyle x^{n}+c_{n-1}x^{n-1}+\cdots +c_{0}}.[2] This ring is often denoted byOK{\displaystyle O_{K}} orOK{\displaystyle {\mathcal {O}}_{K}}. Since anyinteger belongs toK{\displaystyle K} and is anintegral element ofK{\displaystyle K}, the ringZ{\displaystyle \mathbb {Z} } is always asubring ofOK{\displaystyle O_{K}}.

The ring of integersZ{\displaystyle \mathbb {Z} } is the simplest possible ring of integers.[a] Namely,Z=OQ{\displaystyle \mathbb {Z} =O_{\mathbb {Q} }} whereQ{\displaystyle \mathbb {Q} } is thefield ofrational numbers.[3] And indeed, inalgebraic number theory the elements ofZ{\displaystyle \mathbb {Z} } are often called the "rational integers" because of this.

The next simplest example is the ring ofGaussian integersZ[i]{\displaystyle \mathbb {Z} [i]}, consisting ofcomplex numbers whosereal and imaginary parts are integers. It is the ring of integers in the number fieldQ(i){\displaystyle \mathbb {Q} (i)} ofGaussian rationals, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers,Z[i]{\displaystyle \mathbb {Z} [i]} is aEuclidean domain.

The ring of integers of an algebraic number field is the unique maximalorder in the field. It is always aDedekind domain.[4]

Properties

[edit]

The ring of integersOK is afinitely-generatedZ{\displaystyle \mathbb {Z} }-module. Indeed, it is afreeZ{\displaystyle \mathbb {Z} }-module, and thus has anintegral basis, that is abasisb1, ...,bn ∈ OK of theQ{\displaystyle \mathbb {Q} }-vector space K such that each element x inOK can be uniquely represented as

x=i=1naibi,{\displaystyle x=\sum _{i=1}^{n}a_{i}b_{i},}

withaiZ{\displaystyle a_{i}\in \mathbb {Z} }.[5] Therank n ofOK as a freeZ{\displaystyle \mathbb {Z} }-module is equal to thedegree of K overQ{\displaystyle \mathbb {Q} }.

Examples

[edit]

Computational tool

[edit]

A useful tool for computing the integral closure of the ring of integers in an algebraic fieldK/Q{\displaystyle K/\mathbb {Q} } is thediscriminant. IfK is of degreen overQ{\displaystyle \mathbb {Q} }, andα1,,αnOK{\displaystyle \alpha _{1},\ldots ,\alpha _{n}\in {\mathcal {O}}_{K}} form a basis ofK{\displaystyle K} overQ{\displaystyle \mathbb {Q} }, setd=ΔK/Q(α1,,αn){\displaystyle d=\Delta _{K/\mathbb {Q} }(\alpha _{1},\ldots ,\alpha _{n})}. Then,OK{\displaystyle {\mathcal {O}}_{K}} is asubmodule of theZ{\displaystyle \mathbb {Z} }-module spanned byα1/d,,αn/d{\displaystyle \alpha _{1}/d,\ldots ,\alpha _{n}/d}.[6]pg. 33 In fact, ifd is square-free, thenα1,,αn{\displaystyle \alpha _{1},\ldots ,\alpha _{n}} forms an integral basis forOK{\displaystyle {\mathcal {O}}_{K}}.[6]pg. 35

Cyclotomic extensions

[edit]

Ifp is aprime,ζ is apthroot of unity andK=Q(ζ){\displaystyle K=\mathbb {Q} (\zeta )} is the correspondingcyclotomic field, then an integral basis ofOK=Z[ζ]{\displaystyle {\mathcal {O}}_{K}=\mathbb {Z} [\zeta ]} is given by(1, ζ, ζ 2, ..., ζp−2).[7]

Quadratic extensions

[edit]

Ifd{\displaystyle d} is asquare-free integer andK=Q(d){\displaystyle K=\mathbb {Q} ({\sqrt {d}}\,)} is the correspondingquadratic field, thenOK{\displaystyle {\mathcal {O}}_{K}} is a ring ofquadratic integers and its integral basis is given by(1,1+d2){\displaystyle \left(1,{\frac {1+{\sqrt {d}}}{2}}\right)} ifd ≡ 1 (mod 4) and by(1,d){\displaystyle (1,{\sqrt {d}})} ifd ≡ 2, 3 (mod 4).[8] This can be found by computing theminimal polynomial of an arbitrary elementa+bdQ(d){\displaystyle a+b{\sqrt {d}}\in \mathbb {Q} ({\sqrt {d}})} wherea,bQ{\displaystyle a,b\in \mathbb {Q} }.

Multiplicative structure

[edit]

In a ring of integers, every element has a factorization intoirreducible elements, but the ring need not have the property ofunique factorization: for example, in the ring of integersZ[5]{\displaystyle \mathbb {Z} [{\sqrt {-5}}]}, the element 6 has two essentially different factorizations into irreducibles:[4][9]

6=23=(1+5)(15).{\displaystyle 6=2\cdot 3=(1+{\sqrt {-5}})(1-{\sqrt {-5}}).}

A ring of integers is always aDedekind domain, and so has unique factorization ofideals intoprime ideals.[10]

Theunits of a ring of integersOK is afinitely generated abelian group byDirichlet's unit theorem. Thetorsion subgroup consists of theroots of unity ofK. A set of torsion-free generators is called a set offundamental units.[11]

Generalization

[edit]

One defines the ring of integers of anon-archimedean local fieldF as the set of all elements ofF with absolute value≤ 1; this is a ring because of the strong triangle inequality.[12] IfF is the completion of an algebraic number field, its ring of integers is the completion of the latter's ring of integers. The ring of integers of an algebraic number field may be characterised as the elements which are integers in every non-archimedean completion.[3]

For example, thep-adic integersZp{\displaystyle \mathbb {Z} _{p}} are the ring of integers of thep-adic numbersQp{\displaystyle \mathbb {Q} _{p}}.

See also

[edit]

Notes

[edit]
  1. ^The ring of integers, without specifying the field, refers to the ringZ{\displaystyle \mathbb {Z} } of "ordinary" integers, the prototypical object for all those rings. It is a consequence of the ambiguity of the word "integer" in abstract algebra.

Citations

[edit]
  1. ^Alaca & Williams 2003, p. 110, Defs. 6.1.2-3.
  2. ^Alaca & Williams 2003, p. 74, Defs. 4.1.1-2.
  3. ^abCassels 1986, p. 192.
  4. ^abSamuel 1972, p. 49.
  5. ^Cassels (1986) p. 193
  6. ^abBaker."Algebraic Number Theory"(PDF). pp. 33–35.
  7. ^Samuel 1972, p. 43.
  8. ^Samuel 1972, p. 35.
  9. ^Artin, Michael (2011).Algebra. Prentice Hall. p. 360.ISBN 978-0-13-241377-0.
  10. ^Samuel 1972, p. 50.
  11. ^Samuel 1972, pp. 59–62.
  12. ^Cassels 1986, p. 41.


References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Ring_of_integers&oldid=1297688981"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp