Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Rhenium compounds

From Wikipedia, the free encyclopedia

Rhenium compounds are compounds formed by the transition metalrhenium (Re). Rhenium can form in manyoxidation states, and compounds are known for every oxidation state from −3 to +7 except −2, although the oxidation states +7, +4, and +3 are the most common.[1] Rhenium is most available commercially as salts ofperrhenate, includingsodium andammonium perrhenates. These are white, water-soluble compounds.[2] The tetrathioperrhenate anion [ReS4] is possible.[3]

Chalcogenides

[edit]

Oxides

[edit]
Rhenium(VI) oxide has an appearance similar to that of copper.

Rhenium(IV) oxide (or rhenium dioxide) is an oxide of rhenium, with theformula ReO2. This gray to black crystallinesolid is a laboratory reagent that can be used as acatalyst. It adopts therutile structure. It forms viacomproportionation:[4]

2 Re2O7 + 3 Re → 7 ReO2

Single crystals are obtained bychemical transport, usingiodine as the transporting agent.[5] At high temperatures it undergoesdisproportionation. It formsperrhenates with alkalinehydrogen peroxide andoxidizing acids.[6] In molten sodium hydroxide it forms sodium rhenate.[7]

Rhenium(VI) oxide, or rhenium trioxide, is another oxide of rhenium. It is the only stable group 7 trioxide. It has an appearance somewhat likecopper. It can be formed by reducingrhenium(VII) oxide withcarbon monoxide at 200 °C or elementalrhenium at 400 °C.[8] Re2O7 can also be reduced withdioxane.[9] Rhenium trioxide crystallizes with aprimitivecubicunit cell, with alattice parameter of 3.742Å (374.2pm). The structure of ReO3 is similar to that ofperovskite (ABO3), without the large A cation at the centre of the unit cell. Each rhenium center is surrounded by anoctahedron defined by six oxygen centers. These octahedra share corners to form the 3-dimensional structure. The coordination number of O is 2, because each oxygen atom has 2 neighbouring Re atoms.[10]

Rhenium(VII) oxide, or rhenium heptoxide, is another oxide of rhenium. It is the anhydride form ofperrhenic acid, and is the raw material for all rhenium compounds.[11] Solid Re2O7 consists of alternating octahedral and tetrahedral Re centres. Upon heating, the polymercracks to give molecular (nonpolymeric) Re2O7. This molecular species closely resemblesmanganese heptoxide, consisting of a pair of ReO4 tetrahedra that share a vertex, i.e., O3Re–O–ReO3.[12]

Other chalcogenides

[edit]

Rhenium disulfide is asulfide with the formula ReS2. It has a layered structure where atoms are strongly bonded within each layer. The layers are held together by weakVan der Waals bonds, and can be easily peeled off from the bulk material. It is a two-dimensional (2D) group VIItransition metal dichalcogenide (TMD). ReS2 was isolated down to monolayers which is only one unit cell in thickness for the first time in 2014.[13] ReS2 is found in nature as the mineralrheniite.[14] It can be synthesized from the reaction between rhenium and sulfur at 1000 °C, or the decomposition ofrhenium(VII) sulfide at 1100 °C:[15]

Re + 2 S → ReS2
Re2S7 → 2 ReS2 + 3 S

Rhenium diselenide (ReSe2) also has a layered structure, although, contrary to the other dichalcogenides, rhenium ditelluride does not.[16] In addition, rhenium also forms a heptoxide, which can be produced by the direct reaction of those elements, or through the reaction ofReO4 andH2S in 4NHCl.[17]

Perrhenates

[edit]
Main article:Perrhenate
Sample of sodium perrhenate, NaReO4

The perrhenate ion is theanion with the formulaReO
4
, or a compound containing this ion. The perrhenate anion is tetrahedral, being similar in size and shape toperchlorate and the valenceisoelectronicpermanganate. The perrhenate anion is stable over a broad pH range and can be precipitated from solutions with the use of organic cations. At normal pH, perrhenate exists as metaperrhenate (ReO
4
), but at high pH mesoperrhenate (ReO3−
5
) forms. Perrhenate, like its conjugate acidperrhenic acid, features rhenium in theoxidation state of +7 with a d0 configuration. Solid perrhenate salts takes on the color of the cation.[18] These salts are prepared by oxidation of rhenium compounds with nitric acid followed by neutralization of the resulting perrhenic acid.[19][20][21] Addition oftetrabutylammonium chloride to aqueous solutions of sodium perrhenate gives tetrabutylammonium perrhenate, which is soluble in organic solvents.[22]

Halides

[edit]

Rhenium can form at least four fluorides, of whichrhenium heptafluoride is the most common. This is the only thermally stable metal heptafluoride.[23] It has apentagonal bipyramidal structure similar toIF7,[24] and can be prepared by the direct reaction of the elements at 400 °C.[25] Combining this with additional rhenium metal at 300 °C in apressure vessel would producerhenium hexafluoride.[26] It is one of the seventeen known binaryhexafluorides. Both of these fluorides have a very low melting point.[27] In addition to this, rhenium also forms apentafluoride, which form yellow-green crystals,[28] and atetrafluoride, which forms blue crystals.[29]

The most common rhenium chlorides are ReCl6,ReCl5, ReCl4, andReCl3. Unlike fluorine, chlorine cannot oxidize rhenium past +V; the hexachloride is made from the hexafluoride and the heptachloride is entirely unknown.[23] Rhenium(III) chloride (ReCl3 or sometimes written as Re3Cl9), is a dark-red hygroscopic solid, prepared from rhenium(V) chloride and insoluble in ordinary solvents. Historically, the trichloride is one of the earliest cluster compounds with recognizable metal-metal multiple bonds. Indeed, all the chlorides feature extensive Re-Re bonding, which appears characteristic of rhenium in oxidation states lower than VII. Salts of [Re2Cl8]2− feature aquadruple metal-metal bond. The metal-metal bonds and antibonds lie close to theFermi level in many dinuclear chlororhenate complexes; both oxidized and reduced derivatives with lesser bond order (some of themmixed-valence) are known.[30]

Rhenium(III) bromide also adopts the same structure, and is a black lustrous crystalline solid.[31][32] It can be obtained by the direct reaction between rhenium metal andbromine at 500 °C under nitrogen:[33]

6 Re + 9 Br2 → 2 Re3Br9

Rhenium also forms two iodides,rhenium tetraiodide, which can be reduced fromperrhenic acid withhydrogen iodide, andrhenium triiodide, which forms from the decomposition of this.[34][35]

Liketungsten andmolybdenum, with which it shares chemical similarities, rhenium forms a variety ofoxyhalides. The oxychlorides are most common, and include ReOCl4, ReOCl3.

Organometallic compounds

[edit]
Main article:Organorhenium chemistry

Dirhenium decacarbonyl is a common entry point to other rhenium carbonyls. The general patterns are similar to the relatedmanganese carbonyls. It is possible to reduce this dimer with sodiumamalgam to Na[Re(CO)5] with rhenium in the formal oxidation state −1. Bromination of dirhenium decacarbonyl givesbromopentacarbonylrhenium(I),[36] then reduced withzinc andacetic acid topentacarbonylhydridorhenium:[37]

Re2(CO)10 + Br2 → 2 Re(CO)5Br
Re(CO)5Br + Zn + HOAc → Re(CO)5H + ZnBr(OAc)

Bromopentacarbonylrhenium(I) is readily decarbonylated. In refluxing water, it forms the triaquo cation:[38]

Re(CO)5Br + 3 H2O → [Re(CO)3(H2O)3]Br + 2 CO

Withtetraethylammonium bromide Re(CO)5Br reacts to give the anionic tribromide:[39]

Re(CO)5Br + 2 NEt4Br → [NEt4]2[Re(CO)3Br3] + 2 CO
Structure ofmethylrhenium trioxide

Rhenium forms a variety of alkyl and aryl derivatives, often with pi-donor coligands such as oxo groups. Well known ismethylrhenium trioxide ("MTO"), CH3ReO3 a volatile, colourless solid, a rare example of a stable high-oxidation state metal alkyl complex. This compound has been used as acatalyst in some laboratory experiments. It can be prepared by many routes, a typical method is the reaction of Re2O7 andtetramethyltin:[40]

Re2O7 + (CH3)4Sn → CH3ReO3 + (CH3)3SnOReO3

Analogous alkyl and aryl derivatives are known. Although PhReO3 is unstable and decomposes at –30 °C, the corresponding sterically hindered mesityl and 2,6-xylyl derivatives (MesReO3 and 2,6-(CH3)2C6H3ReO3) are stable at room temperature. The electron poor 4-trifluoromethylphenylrhenium trioxide (4-CF3C6H4ReO3) is likewise relatively stable.[41] MTO and other organylrhenium trioxides catalyze oxidation reactions withhydrogen peroxide as well as olefin metathesis in the presence of a Lewis acid activator.[42] Terminalalkynes yield the corresponding acid or ester, internal alkynes yield diketones, andalkenes give epoxides. MTO also catalyses the conversion ofaldehydes anddiazoalkanes into an alkene.[43]

Rhenium is also able to make complexes withfullerene ligands such as Re2(PMe3)4H822C60).

One of the firsttransition metal hydride complexes to be reported was (C5H5)2ReH. A variety ofhalf-sandwich compounds have been prepared from (C5H5)Re(CO)3 and (C5Me5)Re(CO)3. Notable derivatives include the electron-precise oxide (C5Me5)ReO3 and (C5H5)2Re2(CO)4.

Pictures of rhenium compounds

[edit]
Rhenium compounds
  • Rhenium(VII) oxide (Re2O7)
    Rhenium(VII) oxide (Re2O7)
  • Ammonium perrhenate (NH4ReO4)
    Ammonium perrhenate (NH4ReO4)
  • Potassium perrhenate (KReO4)
    Potassium perrhenate (KReO4)
  • Sodium perrhenate (NaReO4)
    Sodium perrhenate (NaReO4)
  • Rhenium diboride (ReB2)
    Rhenium diboride (ReB2)
  • Dirhenium decacarbonyl (Re2(CO)10)
    Dirhenium decacarbonyl (Re2(CO)10)
  • Tetrabutylammonium octachlorodirhenate ((NBu4)2Re2Cl8)
    Tetrabutylammonium octachlorodirhenate ((NBu4)2Re2Cl8)
  • Rhenium(IV) oxide (ReO2)
    Rhenium(IV) oxide (ReO2)
  • Rhenium(VI) oxide (ReO3)
    Rhenium(VI) oxide (ReO3)

See also

[edit]

References

[edit]
  1. ^Housecroft, Catherine E.; Sharpe, Alan G. (2018).Inorganic Chemistry (5th ed.). Pearson Prentice-Hal. p. 829.ISBN 978-1292-13414-7.
  2. ^Glemser, O. (1963) "Ammonium Perrhenate" inHandbook of Preparative Inorganic Chemistry, 2nd ed., G. Brauer (ed.), Academic Press, NY., Vol. 1, pp. 1476–85.
  3. ^Goodman, JT; Rauchfuss, TB (2002). "Useful Reagents and Ligands".Inorganic Syntheses.Inorganic Syntheses. Vol. 33. pp. 107–110.doi:10.1002/0471224502.ch2.ISBN 0471208256.
  4. ^G. Glemser "Rhenium (IV) Oxide" Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1480.
  5. ^Rogers, D. B.; Butler, S. R.; Shannon, R. D. (1972). "Single Crystals of Transition-Metal Dioxides".Inorganic Syntheses. Vol. XIII. pp. 135–145.doi:10.1002/9780470132449.ch27.ISBN 9780470132449.
  6. ^"RHENIUM DIOXIDE - Manufacturer". Aaamolybdenum.com. Archived fromthe original on 2003-02-09. Retrieved2012-08-06.
  7. ^G. Glemser "Sodium Rhenate (IV)" Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1483.
  8. ^H. Nechamkin, C. F. Hiskey, "Rhenium(VI): Oxide (Rhenium Trioxide)" Inorganic Syntheses, 1950 Volume 3, pp. 186-188.doi:10.1002/9780470132340.ch49
  9. ^G. Glemser "Rhenium (VI) Oxide" Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 2. p. 1482.
  10. ^Greenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann.ISBN 978-0-08-037941-8., p. 1047.
  11. ^Georg Nadler, Hans (2000). "Rhenium and Rhenium Compounds".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.a23_199.ISBN 3527306730.
  12. ^Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press.ISBN 0-19-855370-6.
  13. ^Tongay, Sefaattin; Sahin, Hasan; Ko, Changhyun; Luce, Alex; Fan, Wen; Liu, Kai; Zhou, Jian; Huang, Ying-Sheng; Ho, Ching-Hwa; Yan, Jinyuan; Ogletree, D. Frank; Aloni, Shaul; Ji, Jie; Li, Shushen; Li, Jingbo; Peeters, F. M.; Wu, Junqiao (2014)."Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling".Nature Communications.5: 3252.Bibcode:2014NatCo...5.3252T.doi:10.1038/ncomms4252.PMID 24500082.
  14. ^"Rheniite".Mindat.org. Retrieved2020-07-17.
  15. ^Brauer, Georg (1981).Handbuch der Präparativen Anorganischen Chemie. Band III (in German) (3rd ed.). Stuttgart: Ferdinand Enke. p. 1619.ISBN 3-432-87823-0.
  16. ^Wildervanck, J.C; Jellinek, F (1971). "The dichalcogenides of technetium and rhenium".Journal of the Less Common Metals.24:73–81.doi:10.1016/0022-5088(71)90168-8.
  17. ^Greenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann.ISBN 978-0-08-037941-8.
  18. ^Greenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann.ISBN 978-0-08-037941-8.
  19. ^O. Glemser "Rhenium" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1476-85.
  20. ^Richard J. Thompson (1966). "Ammonium Perrhenate".Inorganic Syntheses. Vol. 8. pp. 171–173.doi:10.1002/9780470132395.ch44.ISBN 9780470132395.
  21. ^Wm. T. Smith, S. Harmon Long (1948). "The Salts of Perrhenic Acid. I. The Alkali Metals and Ammonium".Journal of the American Chemical Society.70 (1):354–356.doi:10.1021/ja01181a110.
  22. ^Dilworth, J. R.; Hussain, W.; Hutson, A. J.; Jones, C. J.; McQuillan, F. S. (1997). "Tetrahalo Oxorhenate Anions".Inorganic Syntheses. pp. 257–262.doi:10.1002/9780470132623.ch42.ISBN 9780470132623.
  23. ^abGreenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann.ISBN 978-0-08-037941-8.
  24. ^Vogt T.; Fitch A. N.; Cockcroft J. K. (1994). "Crystal and Molecular Structures of Rhenium Heptafluoride".Science.263 (5151):1265–7.Bibcode:1994Sci...263.1265V.doi:10.1126/science.263.5151.1265.PMID 17817431.S2CID 20013073.
  25. ^Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Rhenium".Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1118–1123.ISBN 978-3-11-007511-3.
  26. ^Drews, Thomas; Supeł, Joanna; Hagenbach, Adelheid; Seppelt, Konrad (2006-05-01)."Solid State Molecular Structures of Transition Metal Hexafluorides".Inorganic Chemistry.45 (9):3782–3788.doi:10.1021/ic052029f.ISSN 0020-1669.PMID 16634614.
  27. ^CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. David R. Lide (90th ed. 2009-2010 ed.). Boca Raton, Fla.: CRC Press. 2009.ISBN 978-1-4200-9084-0.OCLC 406781123.{{cite book}}: CS1 maint: others (link)
  28. ^Colton, Ray (1965).The Chemistry of Rhenium and Technetium.Interscience Publishers. p. 59.ISBN 978-0-470-16650-5. Retrieved6 April 2023.
  29. ^"WebElements Periodic Table » Rhenium » rhenium tetrafluoride". webelements.com. Retrieved6 April 2023.
  30. ^Cotton, F. A.; Walton, R. A. "Multiple Bonds Between Metal Atoms" Oxford (Oxford): 1993.ISBN 0-19-855649-7. Ch. 2.
  31. ^V. V. Ugarov (1971). "Electron-diffraction investigation of the structure of the Re3Br9 molecule".Journal of Structural Chemistry.12 (2):286–288.doi:10.1007/BF00739116.S2CID 100857081.
  32. ^Richard J. Thompson; Ronnie E. Foster; James L. Booker; Stephen J. Lippard (1967). "Rhenium(III) Bromide". InMuetterties, Earl (ed.).Inorganic Syntheses. Vol. 10. McGraw-Hill, Inc. pp. 58–61.doi:10.1002/9780470132418.ch9.ISBN 9780470132418.
  33. ^Harro Hagen; Adolf Sieverts (1933). "Rheniumtribromid".Zeitschrift für anorganische und allgemeine Chemie (in German).215 (1). Verlag GmbH & Co. KGaA, Weinheim:111–112.doi:10.1002/zaac.19332150114.
  34. ^Inorganic Syntheses, Volume 7.John Wiley & Sons. 22 September 2009. p. 185.ISBN 978-0-470-13270-8. Retrieved6 May 2023.
  35. ^Kemmitt, R. D. W.; Peacock, R. D. (26 January 2016).The Chemistry of Manganese, Technetium and Rhenium: Pergamon Texts in Inorganic Chemistry.Elsevier. p. 921.ISBN 978-1-4831-8762-4. Retrieved7 May 2023.
  36. ^Schmidt, Steven P.; Trogler, William C.; Basolo, Fred (1990). "Pentacarbonylrhenium Halides".Inorganic Syntheses. Vol. 28. pp. 154–159.doi:10.1002/9780470132593.ch42.ISBN 978-0-470-13259-3.
  37. ^Michael A. Urbancic, John R. Shapley (1990). "Pentacarbonylhydridorhenium".Inorganic Syntheses. Vol. 28. pp. 165–168.doi:10.1002/9780470132593.ch43.ISBN 978-0-470-13259-3.
  38. ^Lazarova, N.; James, S.; Babich, J.; Zubieta, J. (2004). "A convenient synthesis, chemical characterization and reactivity of [Re(CO)3(H2O)3]Br: the crystal and molecular structure of [Re(CO)3(CH3CN)2Br]".Inorganic Chemistry Communications.7 (9):1023–1026.doi:10.1016/j.inoche.2004.07.006.
  39. ^Alberto, R.; Egli, A.; Abram, U.; Hegetschweiler, K.; Gramlich V.; Schubiger, P. A. (1994). "Synthesis and reactivity of [NEt4]2[ReBr3(CO)3]. Formation and structural characterization of the clusters [NEt4][Re33-OH)(µ-OH)3(CO)9] and [NEt4][Re2(µ-OH)3(CO)6] by alkaline titration".J. Chem. Soc., Dalton Trans. (19):2815–2820.doi:10.1039/DT9940002815.
  40. ^Romão, Carlos C.; Kühn, Fritz E.; Herrmann, Wolfgang A. (1997). "Rhenium(VII) Oxo and Imido Complexes: Synthesis, Structures, and Applications".Chemical Reviews.97 (8):3197–3246.doi:10.1021/cr9703212.PMID 11851489.
  41. ^Dyckhoff, Florian; Li, Su; Reich, Robert M.; Hofmann, Benjamin J.; Herdtweck, Eberhardt; Kühn, Fritz E. (2018). "Synthesis, characterization and application of organorhenium(vii) trioxides in metathesis reactions and epoxidation catalysis".Dalton Transactions.47 (29):9755–9764.doi:10.1039/c8dt02326c.ISSN 1477-9226.PMID 29987275.
  42. ^Schmidt, Boris (1997). "Methyltrioxorhenium - from oxidation and cyclopropanation to metathesis".Journal für Praktische Chemie/Chemiker-Zeitung.339 (1):493–496.doi:10.1002/prac.19973390190.ISSN 0941-1216.
  43. ^Hudson, Andrew; Betz, Daniel; Kühn, Fritz E.; Jiménez-Alemán, Guillermo H.; Boland, Wilhelm (2013-09-16)."Methyltrioxorhenium".Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons, Ltd.doi:10.1002/047084289x.rn00017.pub3.ISBN 978-0-471-93623-7.
Rhenium(0)
Organorhenium(0)
Rhenium(I)
Organorhenium(I)
Rhenium(II)
Rhenium(III)
Rhenium(IV)
Rhenium(V)
Rhenium(VI)
Rhenium(VII)
Perrhenates
Organorhenium(VII)
Retrieved from "https://en.wikipedia.org/w/index.php?title=Rhenium_compounds&oldid=1282666361"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp