Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Reissner–Nordström metric

From Wikipedia, the free encyclopedia
Spherically symmetric metric with electric charge
This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(January 2013) (Learn how and when to remove this message)
General relativity
Spacetime curvature schematic

Inphysics andastronomy, theReissner–Nordström metric is astatic solution to theEinstein–Maxwell field equations that corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of massM. The analogous solution for a charged, rotating body is given by theKerr–Newman metric.

The metric was discovered between 1916 and 1921 byHans Reissner,[1]Hermann Weyl,[2]Gunnar Nordström[3] andGeorge Barker Jeffery[4] independently.[5]

Metric

[edit]

Inspherical coordinates(t,r,θ,φ){\displaystyle (t,r,\theta ,\varphi )}, the Reissner–Nordström metric (i.e. theline element) is

ds2{\displaystyle ds^{2}}=c2dτ2{\displaystyle =c^{2}\,d\tau ^{2}}=(1rsr+rQ2r2)c2dt2{\displaystyle =\left(1-{\frac {r_{\text{s}}}{r}}+{\frac {r_{\rm {Q}}^{2}}{r^{2}}}\right)c^{2}\,dt^{2}}(1rsr+rQ2r2)1dr2{\displaystyle -\left(1-{\frac {r_{\text{s}}}{r}}+{\frac {r_{Q}^{2}}{r^{2}}}\right)^{-1}\,dr^{2}} r2dθ2{\displaystyle -~r^{2}\,d\theta ^{2}} r2sin2θdφ2,{\displaystyle -~r^{2}\sin ^{2}\theta \,d\varphi ^{2},}

where

The total mass of the central body and its irreducible mass are related by[6][7]

Mirr=c2Gr+22  M=Q216πε0GMirr+Mirr.{\displaystyle M_{\rm {irr}}={\frac {c^{2}}{G}}{\sqrt {\frac {r_{+}^{2}}{2}}}\ \to \ M={\frac {Q^{2}}{16\pi \varepsilon _{0}GM_{\rm {irr}}}}+M_{\rm {irr}}.}

The difference betweenM{\displaystyle M} andMirr{\displaystyle M_{\rm {irr}}} is due to theequivalence of mass and energy, which makes theelectric field energy also contribute to the total mass.

In the limit that the chargeQ{\displaystyle Q} (or equivalently, the length scalerQ{\displaystyle r_{Q}}) goes to zero, one recovers theSchwarzschild metric. The classical Newtonian theory of gravity may then be recovered in the limit as the ratiors/r{\displaystyle r_{\text{s}}/r} goes to zero. In the limit that bothrQ/r{\displaystyle r_{Q}/r} andrs/r{\displaystyle r_{\text{s}}/r} go to zero, the metric becomes theMinkowski metric forspecial relativity.

In practice, the ratiors/r{\displaystyle r_{\text{s}}/r} is often extremely small. For example, the Schwarzschild radius of theEarth is roughlymm. Even at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The ratio only becomes large close toblack holes and other ultra-dense objects such asneutron stars.

Charged black holes

[edit]

Although charged black holes withrQ ≪rs are similar to theSchwarzschild black hole, they have two horizons: theevent horizon and an internalCauchy horizon.[8] As with the Schwarzschild metric, the event horizons for the spacetime are located where the metric componentgrr{\displaystyle g_{rr}} diverges; that is, where1rsr+rQ2r2=1grr=0.{\displaystyle 1-{\frac {r_{\rm {s}}}{r}}+{\frac {r_{\rm {Q}}^{2}}{r^{2}}}=-{\frac {1}{g_{rr}}}=0.}

This equation has two solutions:r±=12(rs±rs24rQ2).{\displaystyle r_{\pm }={\frac {1}{2}}\left(r_{\rm {s}}\pm {\sqrt {r_{\rm {s}}^{2}-4r_{\rm {Q}}^{2}}}\right).}

These concentricevent horizons becomedegenerate for 2rQ =rs, which corresponds to anextremal black hole. Black holes with 2rQ >rs cannot exist in nature because if the charge is greater than the mass there can be no physical event horizon (the term under the square root becomes negative).[9] Objects with a charge greater than their mass can exist in nature, but they can not collapse down to a black hole, and if they could, they would display anaked singularity.[10] Theories withsupersymmetry usually guarantee that such "superextremal" black holes cannot exist.

Theelectromagnetic potential isAα=(Q/r,0,0,0).{\displaystyle A_{\alpha }=(Q/r,0,0,0).}

If magnetic monopoles are included in the theory, then a generalization to include magnetic chargeP is obtained by replacingQ2 byQ2 +P2 in the metric and including the termP cos θ  in the electromagnetic potential.[clarification needed]

Gravitational time dilation

[edit]

Thegravitational time dilation in the vicinity of the central body is given byγ=|gtt|=r2Q2+(r2M)r,{\displaystyle \gamma ={\sqrt {|g^{tt}|}}={\sqrt {\frac {r^{2}}{Q^{2}+(r-2M)r}}},}which relates to the local radial escape velocity of a neutral particlevesc=γ21γ.{\displaystyle v_{\rm {esc}}={\frac {\sqrt {\gamma ^{2}-1}}{\gamma }}.}

Christoffel symbols

[edit]

TheChristoffel symbolsΓijk=s=03 gis2(gjsxk+gskxjgjkxs){\displaystyle \Gamma ^{i}{}_{jk}=\sum _{s=0}^{3}\ {\frac {g^{is}}{2}}\left({\frac {\partial g_{js}}{\partial x^{k}}}+{\frac {\partial g_{sk}}{\partial x^{j}}}-{\frac {\partial g_{jk}}{\partial x^{s}}}\right)}with the indices{0, 1, 2, 3}{t, r, θ, φ}{\displaystyle \{0,\ 1,\ 2,\ 3\}\to \{t,\ r,\ \theta ,\ \varphi \}}give the nonvanishing expressionsΓttr=MrQ2r(Q2+r22Mr)Γrtt=(MrQ2)(r22Mr+Q2)r5Γrrr=Q2Mrr(Q22Mr+r2)Γrθθ=r22Mr+Q2rΓrφφ=sin2θ(r22Mr+Q2)rΓθθr=1rΓθφφ=sinθcosθΓφφr=1rΓφφθ=cotθ{\displaystyle {\begin{aligned}\Gamma ^{t}{}_{tr}&={\frac {Mr-Q^{2}}{r(Q^{2}+r^{2}-2Mr)}}\\[6pt]\Gamma ^{r}{}_{tt}&={\frac {(Mr-Q^{2})\left(r^{2}-2Mr+Q^{2}\right)}{r^{5}}}\\[6pt]\Gamma ^{r}{}_{rr}&={\frac {Q^{2}-Mr}{r(Q^{2}-2Mr+r^{2})}}\\[6pt]\Gamma ^{r}{}_{\theta \theta }&=-{\frac {r^{2}-2Mr+Q^{2}}{r}}\\[6pt]\Gamma ^{r}{}_{\varphi \varphi }&=-{\frac {\sin ^{2}\theta \left(r^{2}-2Mr+Q^{2}\right)}{r}}\\[6pt]\Gamma ^{\theta }{}_{\theta r}&={\frac {1}{r}}\\[6pt]\Gamma ^{\theta }{}_{\varphi \varphi }&=-\sin \theta \cos \theta \\[6pt]\Gamma ^{\varphi }{}_{\varphi r}&={\frac {1}{r}}\\[6pt]\Gamma ^{\varphi }{}_{\varphi \theta }&=\cot \theta \end{aligned}}}

Given the Christoffel symbols, one can compute the geodesics of a test-particle.[11][12]

Tetrad form

[edit]

Instead of working in the holonomic basis, one can perform efficient calculations with atetrad.[13] LeteI=eμI{\displaystyle {\bf {e}}_{I}=e_{\mu I}} be a set ofone-forms with internalMinkowski indexI{0,1,2,3}{\displaystyle I\in \{0,1,2,3\}}, such thatηIJeμIeνJ=gμν{\displaystyle \eta ^{IJ}e_{\mu I}e_{\nu J}=g_{\mu \nu }}. The Reissner metric can be described by the tetrad

e0=G1/2dt{\displaystyle {\bf {e}}_{0}=G^{1/2}\,dt}
e1=G1/2dr{\displaystyle {\bf {e}}_{1}=G^{-1/2}\,dr}
e2=rdθ{\displaystyle {\bf {e}}_{2}=r\,d\theta }
e3=rsinθdφ{\displaystyle {\bf {e}}_{3}=r\sin \theta \,d\varphi }

whereG(r)=1rsr1+rQ2r2{\displaystyle G(r)=1-r_{s}r^{-1}+r_{Q}^{2}r^{-2}}. Theparallel transport of the tetrad is captured by theconnection one-formsωIJ=ωJI=ωμIJ=eIνμeJν{\displaystyle {\boldsymbol {\omega }}_{IJ}=-{\boldsymbol {\omega }}_{JI}=\omega _{\mu IJ}=e_{I}^{\nu }\nabla _{\mu }e_{J\nu }}. These have only 24 independent components compared to the 40 components ofΓλμν{\displaystyle \Gamma ^{\lambda }{}_{\mu \nu }}. The connections can be solved for by inspection from Cartan's equationdeI=eJωIJ{\displaystyle d{\bf {e}}_{I}={\bf {e}}^{J}\wedge {\boldsymbol {\omega }}_{IJ}}, where the left hand side is theexterior derivative of the tetrad, and the right hand side is awedge product.

ω10=12rGdt{\displaystyle {\boldsymbol {\omega }}_{10}={\frac {1}{2}}\partial _{r}G\,dt}
ω20=ω30=0{\displaystyle {\boldsymbol {\omega }}_{20}={\boldsymbol {\omega }}_{30}=0}
ω21=G1/2dθ{\displaystyle {\boldsymbol {\omega }}_{21}=-G^{1/2}\,d\theta }
ω31=sinθG1/2dφ{\displaystyle {\boldsymbol {\omega }}_{31}=-\sin \theta \,G^{1/2}\,d\varphi }
ω32=cosθdφ{\displaystyle {\boldsymbol {\omega }}_{32}=-\cos \theta \,d\varphi }

TheRiemann tensorRIJ=RμνIJ{\displaystyle {\bf {R}}_{IJ}=R_{\mu \nu IJ}} can be constructed as a collection of two-forms by the second Cartan equationRIJ=dωIJ+ωIKωKJ,{\displaystyle {\bf {R}}_{IJ}=d{\boldsymbol {\omega }}_{IJ}+{\boldsymbol {\omega }}_{IK}\wedge {\boldsymbol {\omega }}^{K}{}_{J},} which again makes use of the exterior derivative and wedge product. This approach is significantly faster than the traditional computation withΓλμν{\displaystyle \Gamma ^{\lambda }{}_{\mu \nu }}; note that there are only four nonzeroωIJ{\displaystyle {\boldsymbol {\omega }}_{IJ}} compared with nine nonzero components ofΓλμν{\displaystyle \Gamma ^{\lambda }{}_{\mu \nu }}.

Equations of motion

[edit]

[14]

Because of thespherical symmetry of the metric, the coordinate system can always be aligned in a way that the motion of a test-particle is confined to a plane, so for brevity and without restriction of generality we useθ instead ofφ. In dimensionless natural units ofG = M = c = K = 1 the motion of an electrically charged particle with the chargeq is given byx¨i=j=03 k=03 Γjki x˙j x˙k+q Fik x˙k{\displaystyle {\ddot {x}}^{i}=-\sum _{j=0}^{3}\ \sum _{k=0}^{3}\ \Gamma _{jk}^{i}\ {{\dot {x}}^{j}}\ {{\dot {x}}^{k}}+q\ {F^{ik}}\ {{\dot {x}}_{k}}}which yieldst¨= 2(Q2Mr)r(r22Mr+Q2)r˙t˙+qQ(r22mr+Q2) r˙{\displaystyle {\ddot {t}}={\frac {\ 2(Q^{2}-Mr)}{r(r^{2}-2Mr+Q^{2})}}{\dot {r}}{\dot {t}}+{\frac {qQ}{(r^{2}-2mr+Q^{2})}}\ {\dot {r}}}r¨=(r22Mr+Q2)(Q2Mr) t˙2r5+(MrQ2)r˙2r(r22Mr+Q2)+(r22Mr+Q2) θ˙2r+qQ(r22mr+Q2)r4 t˙{\displaystyle {\ddot {r}}={\frac {(r^{2}-2Mr+Q^{2})(Q^{2}-Mr)\ {\dot {t}}^{2}}{r^{5}}}+{\frac {(Mr-Q^{2}){\dot {r}}^{2}}{r(r^{2}-2Mr+Q^{2})}}+{\frac {(r^{2}-2Mr+Q^{2})\ {\dot {\theta }}^{2}}{r}}+{\frac {qQ(r^{2}-2mr+Q^{2})}{r^{4}}}\ {\dot {t}}}θ¨=2 θ˙ r˙r.{\displaystyle {\ddot {\theta }}=-{\frac {2\ {\dot {\theta }}\ {\dot {r}}}{r}}.}

All total derivatives are with respect to proper timea˙=dadτ{\displaystyle {\dot {a}}={\frac {da}{d\tau }}}.

Constants of the motion are provided by solutionsS(t,t˙,r,r˙,θ,θ˙,φ,φ˙){\displaystyle S(t,{\dot {t}},r,{\dot {r}},\theta ,{\dot {\theta }},\varphi ,{\dot {\varphi }})} to the partial differential equation[15]0=t˙St+r˙Sr+θ˙Sθ+t¨St˙+r¨Sr˙+θ¨Sθ˙{\displaystyle 0={\dot {t}}{\dfrac {\partial S}{\partial t}}+{\dot {r}}{\frac {\partial S}{\partial r}}+{\dot {\theta }}{\frac {\partial S}{\partial \theta }}+{\ddot {t}}{\frac {\partial S}{\partial {\dot {t}}}}+{\ddot {r}}{\frac {\partial S}{\partial {\dot {r}}}}+{\ddot {\theta }}{\frac {\partial S}{\partial {\dot {\theta }}}}}after substitution of the second derivatives given above. The metric itself is a solution when written as a differential equationS1=1=(1rsr+rQ2r2)c2t˙2(1rsr+rQ2r2)1r˙2r2θ˙2.{\displaystyle S_{1}=1=\left(1-{\frac {r_{s}}{r}}+{\frac {r_{\rm {Q}}^{2}}{r^{2}}}\right)c^{2}\,{\dot {t}}^{2}-\left(1-{\frac {r_{s}}{r}}+{\frac {r_{Q}^{2}}{r^{2}}}\right)^{-1}\,{\dot {r}}^{2}-r^{2}\,{\dot {\theta }}^{2}.}

The separable equationSr2rθ˙Sθ˙=0{\displaystyle {\frac {\partial S}{\partial r}}-{\frac {2}{r}}{\dot {\theta }}{\frac {\partial S}{\partial {\dot {\theta }}}}=0}immediately yields the constant relativistic specific angular momentumS2=L=r2θ˙;{\displaystyle S_{2}=L=r^{2}{\dot {\theta }};}a third constant obtained fromSr2(MrQ2)r(r22Mr+Q2)t˙St˙=0{\displaystyle {\frac {\partial S}{\partial r}}-{\frac {2(Mr-Q^{2})}{r(r^{2}-2Mr+Q^{2})}}{\dot {t}}{\frac {\partial S}{\partial {\dot {t}}}}=0}is the specific energy (energy per unit rest mass)[16]S3=E=t˙(r22Mr+Q2)r2+qQr.{\displaystyle S_{3}=E={\frac {{\dot {t}}(r^{2}-2Mr+Q^{2})}{r^{2}}}+{\frac {qQ}{r}}.}

SubstitutingS2{\displaystyle S_{2}} andS3{\displaystyle S_{3}} intoS1{\displaystyle S_{1}} yields the radial equationcdτ=r2drr4(E1)+2Mr3(Q2+L2)r2+2ML2rQ2L2.{\displaystyle c\int d\tau =\int {\frac {r^{2}\,dr}{\sqrt {r^{4}(E-1)+2Mr^{3}-(Q^{2}+L^{2})r^{2}+2ML^{2}r-Q^{2}L^{2}}}}.}

Multiplying under the integral sign byS2{\displaystyle S_{2}} yields the orbital equationcLr2dθ=Ldrr4(E1)+2Mr3(Q2+L2)r2+2ML2rQ2L2.{\displaystyle c\int Lr^{2}\,d\theta =\int {\frac {L\,dr}{\sqrt {r^{4}(E-1)+2Mr^{3}-(Q^{2}+L^{2})r^{2}+2ML^{2}r-Q^{2}L^{2}}}}.}

The totaltime dilation between the test-particle and an observer at infinity isγ=q Q r3+E r4r2 (r22r+Q2).{\displaystyle \gamma ={\frac {q\ Q\ r^{3}+E\ r^{4}}{r^{2}\ (r^{2}-2r+Q^{2})}}.}

The first derivativesx˙i{\displaystyle {\dot {x}}^{i}} and thecontravariant components of the local 3-velocityvi{\displaystyle v^{i}} are related byx˙i=vi(1v2) |gii|,{\displaystyle {\dot {x}}^{i}={\frac {v^{i}}{\sqrt {(1-v^{2})\ |g_{ii}|}}},}which gives the initial conditionsr˙=vr22M+Q2r(1v2){\displaystyle {\dot {r}}={\frac {v_{\parallel }{\sqrt {r^{2}-2M+Q^{2}}}}{r{\sqrt {(1-v^{2})}}}}}θ˙=vr(1v2).{\displaystyle {\dot {\theta }}={\frac {v_{\perp }}{r{\sqrt {(1-v^{2})}}}}.}

Thespecific orbital energyE=Q22rM+r2r1v2+qQr{\displaystyle E={\frac {\sqrt {Q^{2}-2rM+r^{2}}}{r{\sqrt {1-v^{2}}}}}+{\frac {qQ}{r}}}and thespecific relative angular momentumL=v r1v2{\displaystyle L={\frac {v_{\perp }\ r}{\sqrt {1-v^{2}}}}}of the test-particle are conserved quantities of motion.v{\displaystyle v_{\parallel }} andv{\displaystyle v_{\perp }} are the radial and transverse components of the local velocity-vector. The local velocity is thereforev=v2+v2=(E21)r2Q2r2+2rME2r2.{\displaystyle v={\sqrt {v_{\perp }^{2}+v_{\parallel }^{2}}}={\sqrt {\frac {(E^{2}-1)r^{2}-Q^{2}-r^{2}+2rM}{E^{2}r^{2}}}}.}

Alternative formulation of metric

[edit]

The metric can be expressed inKerr–Schild form like this:gμν=ημν+fkμkνf=Gr2[2MrQ2]k=(kx,ky,kz)=(xr,yr,zr)k0=1.{\displaystyle {\begin{aligned}g_{\mu \nu }&=\eta _{\mu \nu }+fk_{\mu }k_{\nu }\\[5pt]f&={\frac {G}{r^{2}}}\left[2Mr-Q^{2}\right]\\[5pt]\mathbf {k} &=(k_{x},k_{y},k_{z})=\left({\frac {x}{r}},{\frac {y}{r}},{\frac {z}{r}}\right)\\[5pt]k_{0}&=1.\end{aligned}}}

Notice thatk is aunit vector. HereM is the constant mass of the object,Q is the constant charge of the object, andη is theMinkowski tensor.

See also

[edit]

Notes

[edit]
  1. ^Reissner, H. (1916)."Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie".Annalen der Physik.355 (9):106–120.Bibcode:1916AnP...355..106R.doi:10.1002/andp.19163550905.ISSN 0003-3804.
  2. ^Weyl, Hermann (1917)."Zur Gravitationstheorie".Annalen der Physik.359 (18):117–145.Bibcode:1917AnP...359..117W.doi:10.1002/andp.19173591804.ISSN 0003-3804.
  3. ^Nordström, G. (1918). "On the Energy of the Gravitational Field in Einstein's Theory".Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings.20 (2):1238–1245.Bibcode:1918KNAB...20.1238N.
  4. ^Jeffery, G. B. (1921)."The field of an electron on Einstein's theory of gravitation".Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character.99 (697):123–134.Bibcode:1921RSPSA..99..123J.doi:10.1098/rspa.1921.0028.ISSN 0950-1207.
  5. ^Siegel, Ethan (2021-10-13)."Surprise: the Big Bang isn't the beginning of the universe anymore".Big Think. Retrieved2024-09-03.
  6. ^Thibault Damour:Black Holes: Energetics and Thermodynamics, S. 11 ff.
  7. ^Qadir, Asghar (December 1983). "Reissner-Nordstrom repulsion".Physics Letters A.99 (9):419–420.Bibcode:1983PhLA...99..419Q.doi:10.1016/0375-9601(83)90946-5.
  8. ^Chandrasekhar, Subrahmanyan (2009).The mathematical theory of black holes. Oxford classic texts in the physical sciences (Reprinted ed.). Oxford: Clarendon Press. p. 205.ISBN 978-0-19-850370-5.And finally, the fact that the Reissner–Nordström solution has two horizons, an external event horizon and an internal 'Cauchy horizon', provides a convenient bridge to the study of the Kerr solution in the subsequent chapters.
  9. ^Andrew Hamilton:The Reissner Nordström Geometry (Casa Colorado)
  10. ^Carter, Brandon (25 October 1968). "Global Structure of the Kerr Family of Gravitational Fields".Physical Review.174 (5):1559–1571.Bibcode:1968PhRv..174.1559C.doi:10.1103/PhysRev.174.1559.ISSN 0031-899X.
  11. ^Leonard Susskind:The Theoretical Minimum: Geodesics and Gravity, (General Relativity Lecture 4, timestamp:34m18s)
  12. ^Hackmann, Eva; Xu, Hongxiao (2013). "Charged particle motion in Kerr-Newmann space-times".Physical Review D.87 (12) 124030.arXiv:1304.2142.Bibcode:2013PhRvD..87l4030H.doi:10.1103/PhysRevD.87.124030.ISSN 1550-7998.
  13. ^Wald, Robert M. (2009).General relativity (Repr. ed.). Chicago: Univ. of Chicago Press.ISBN 978-0-226-87033-5.
  14. ^Nordebo, Jonatan."The Reissner-Nordström metric"(PDF).diva-portal. Retrieved8 April 2021.
  15. ^Smith, B. R. (December 2009). "First-order partial differential equations in classical dynamics".American Journal of Physics.77 (12):1147–1153.Bibcode:2009AmJPh..77.1147S.doi:10.1119/1.3223358.ISSN 0002-9505.
  16. ^Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald; Kaiser, David; et al. (2017).Gravitation. Princeton, N.J: Princeton University Press. pp. 656–658.ISBN 978-0-691-17779-3.OCLC 1006427790.

References

[edit]

External links

[edit]
Types
Size
Formation
Properties
Issues
Metrics
Alternatives
Analogs
Lists
Related
Notable
Special
relativity
Background
Fundamental
concepts
Formulation
Phenomena
Spacetime
General
relativity
Background
Fundamental
concepts
Formulation
Phenomena
Advanced
theories
Solutions
Scientists
Retrieved from "https://en.wikipedia.org/w/index.php?title=Reissner–Nordström_metric&oldid=1319761039"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp