Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Red algae

From Wikipedia, the free encyclopedia
Division of plant life

Red algae
Temporal range:Mesoproterozoic–present[1][2]
A-D :Chondrus crispusStackhouse,
E-F :Mastocarpus stellatusJ.Ag.
Scientific classificationEdit this classification
Domain:Eukaryota
Clade:Diaphoretickes
Clade:CAM
Clade:Archaeplastida
Division:Rhodophyta
Wettstein, 1922
Clades

Red algae, orRhodophyta (/rˈdɒfɪtə/,/ˌrdəˈftə/; from Ancient Greek ῥόδον (rhódon) 'rose' and φυτόν (phutón) 'plant'), make up one of the oldest groups ofeukaryoticalgae.[3] The Rhodophyta comprises one of the largestphyla ofalgae, containing over 7,000 recognized species within over 900genera[4] amidst ongoing taxonomic revisions.[5] The majority of species (6,793) areFlorideophyceae, and mostly consist ofmulticellular,marine algae, including many notableseaweeds.[5][6] Red algae are abundant in marine habitats.[7] Approximately 5% of red algae species occur in freshwater environments, with greater concentrations in warmer areas.[8] Except for two coastal cave dwelling species in the asexual classCyanidiophyceae, no terrestrial species exist, which may be due to an evolutionary bottleneck in which the last common ancestor lost about 25% of its core genes and much of its evolutionary plasticity.[9][10]

Red algae form a distinct group characterized by eukaryotic cells withoutflagella andcentrioles,chloroplasts without externalendoplasmic reticulum or unstacked (stroma)thylakoids, and usephycobiliproteins asaccessory pigments, which give them their red color.[11] Despite their name, red algae can vary in color from bright green, soft pink, resembling brown algae, to shades of red and purple, and may be almost black at greater depths.[12][13] Unlike green algae, red algae store sugars as food reserves outside the chloroplasts asfloridean starch, a type of starch that consists of highly branchedamylopectin withoutamylose.[14] Most red algae aremulticellular, macroscopic, andreproduce sexually. The life history of red algae is typically analternation of generations that may have three generations rather than two.[15]Coralline algae, which secretecalcium carbonate and play a major role in buildingcoral reefs, belong there.

Red algae such asPalmaria palmata (dulse) andPorphyra species (laver/nori/gim) are a traditional part ofEuropean andAsian cuisines and are used to make products such asagar,carrageenans, and otherfood additives.[16]

Evolution

[edit]
Botryocladia occidentalisscale bar: 2 cm

Chloroplasts probably evolved following anendosymbiotic event between an ancestral, photosyntheticcyanobacterium and an early eukaryoticphagotroph.[17] This event (termedprimary endosymbiosis) is at the origin of the red andgreen algae (including the land plants orEmbryophytes which emerged within them) and theglaucophytes, which together make up the oldest evolutionary lineages of photosynthetic eukaryotes, theArchaeplastida.[18] A secondary endosymbiosis event involving an ancestral red alga and aheterotrophic eukaryote resulted in the evolution and diversification of several other photosynthetic lineages such asCryptophyta,Haptophyta,Stramenopiles (or Heterokontophyta), andAlveolata.[18] In addition to multicellular brown algae, it is estimated that more than half of all known species of microbial eukaryotes harbor red-alga-derived plastids.[19]

Red algae are divided into theCyanidiophyceae, a class of unicellular andthermoacidophilicextremophiles found in sulphuric hot springs and other acidic environments,[20] an adaptation partly made possible byhorizontal gene transfers from prokaryotes,[21] with about 1% of their genome having this origin,[22] and two sister clades called SCRP (Stylonematophyceae,Compsopogonophyceae,Rhodellophyceae andPorphyridiophyceae) and BF (Bangiophyceae andFlorideophyceae), which are found in both marine and freshwater environments. The BF are macroalgae, seaweed that usually do not grow to more than about 50 cm in length, but a few species can reach lengths of 2 m.[23] In the SCRP clade the class Compsopogonophyceae is multicellular, with forms varying from microscopic filaments to macroalgae. Stylonematophyceae have both unicellular and small simple filamentous species, while Rhodellophyceae and Porphyridiophyceae are exclusively unicellular.[24][25] Most rhodophytes are marine with a worldwide distribution, and are often found at greater depths compared to other seaweeds. While this was formerly attributed to the presence of pigments (such asphycoerythrin) that would permit red algae to inhabit greater depths than other macroalgae by chromatic adaption, recent evidence calls this into question (e.g. the discovery of green algae at great depth in the Bahamas).[26] Some marine species are found on sandy shores, while most others can be found attached to rocky substrata.[27] Freshwater species account for 5% of red algal diversity, but they also have a worldwide distribution in various habitats;[8] they generally prefer clean, high-flow streams with clear waters and rocky bottoms, but with some exceptions.[28] A few freshwater species are found in black waters with sandy bottoms[29] and even fewer are found in morelentic waters.[30] Both marine and freshwater taxa are represented by free-living macroalgal forms and smaller endo/epiphytic/zoic forms, meaning they live in or on other algae, plants, and animals.[11] In addition, some marine species have adopted a parasitic lifestyle and may be found on closely or more distantly related red algal hosts.[31][32]

Taxonomy

[edit]
Further information:Wikispecies:Rhodophyta

In the classification system of Adlet al. 2005, the red algae are classified in theArchaeplastida, along with theglaucophytes and the green algae plus land plants (Viridiplantae or Chloroplastida). The authors use a hierarchical arrangement where the clade names do not signify rank; the class name Rhodophyceae is used for the red algae. No subdivisions are given; the authors say, "Traditional subgroups are artificial constructs, and no longer valid."[33] Many subsequent studies provided evidence that is in agreement for monophyly in the Archaeplastida (including red algae).[34][35][36][37] However, other studies have suggested Archaeplastida isparaphyletic.[38][39] As of January 2020[update], the general consensus is that Archaeplastida is paraphyletic.[40]

Below are other published taxonomies of the red algae using molecular and traditional alpha taxonomic data; however, the taxonomy of the red algae is still in a state of flux (with classification above the level oforder having received little scientific attention for most of the 20th century).[41]

  • If the kingdom Plantae is defined as the Archaeplastida, then red algae will be part of that group.
  • If Plantae are defined more narrowly, to be the Viridiplantae, then the red algae might be excluded.

A major research initiative to reconstruct the Red Algal Tree of Life (RedToL) usingphylogenetic andgenomic approach is funded by theNational Science Foundation as part of the Assembling the Tree of Life Program.

Classification comparison

[edit]
Classification system according to
Saunders and Hommersand 2004[41]
Classification system according to
Hwan Su Yoon et al. 2006[42]
OrdersMulticellular?Pit plugs?Example
SubkingdomRhodoplantaePhylumCyanidiophyta
PhylumRhodophytaWettsteinSubphylumCyanidiophytinasubphylum novus
CyanidialesNoNoCyanidioschyzon merolae
PhylumRhodophytaWettstein
SubphylumRhodellophytina
SubphylumRhodophytinasubphylum novus
RhodellalesNoNoRhodella
Rufusiales,StylonematalesYesNoStylonema

Porphyridiales

NoNoPorphyridium cruentum
Compsopogonales,Rhodochaetales,ErythropeltidalesYesNoCompsopogon

Bangiales

YesYesBangia, "Porphyra"
HildenbrandialesYesYesHildenbrandia
Batrachospermales,Balliales,Balbianiales,Nemaliales,Colaconematales,Acrochaetiales,Palmariales,ThorealesYesYesNemalion
Rhodogorgonales,CorallinalesYesYesCorallina officinalis
Ahnfeltiales,PihiellalesYesYesAhnfeltia
Bonnemaisoniales,Gigartinales,Gelidiales,Gracilariales,Halymeniales,Rhodymeniales,Nemastomatales,Plocamiales,CeramialesYesYesGelidium

Some sources (such as Lee) place all red algae into the class "Rhodophyceae". (Lee's organization is not a comprehensive classification, but a selection of orders considered common or important.[3]: 107 )

A subphylum - Proteorhodophytina - has been proposed to encompass the existing classesCompsopogonophyceae,Porphyridiophyceae,Rhodellophyceae andStylonematophyceae.[43] This proposal was made on the basis of the analysis of the plastid genomes.

See also:Eukaryote § Phylogeny

Species of red algae

[edit]

Over 7,000 species are currently described for the red algae,[5] but the taxonomy is in constant flux with new species described each year.[41][42] The vast majority of these are marine with about 200 that live only infresh water.

Some examples of species and genera of red algae are:

Phylogeny

[edit]

WhileCyanidiophyceae is universally agreed to be the mostbasal, the remaining 6 classes in the subphylum Rhodophytina have uncertain relationships. The below cladogram follows the results of a 2016 study concerning diversification times among red algae.[44]

Rhodophyta

Morphology

[edit]

Red algal morphology is diverse ranging fromunicellular forms to complex parenchymatous and non- parenchymatous thallus.[45] Red algae have doublecell walls.[46] The outer layers contain the polysaccharidesagarose and agaropectin that can be extracted from the cell walls asagar by boiling.[46] The internal walls are mostly cellulose.[46] They also have the most gene-rich plastid genomes known.[47]

Cell structure

[edit]

Red algae do not have flagella and centrioles during their entire life cycle. The distinguishing characters of red algal cell structure include the presence of normal spindle fibres, microtubules, un-stacked photosynthetic membranes, phycobilin pigment granules,[48] pit connection between cells, filamentous genera, and the absence of chloroplast endoplasmic reticulum.[49]

Representation of a Rhodophyte (red algae)

Chloroplasts

[edit]

The presence of the water-soluble pigments calledphycobilins (phycocyanobilin,phycoerythrobilin,phycourobilin andphycobiliviolin), which are localized intophycobilisomes, gives red algae their distinctive color.[50] Theirchloroplasts contain evenly spaced and ungrouped thylakoids[51] and contain the pigments chlorophyll a, α- and β-carotene, lutein and zeaxanthin. Their chloroplasts are enclosed in a double membrane, lack grana and phycobilisomes on the stromal surface of the thylakoid membrane.[52]

Storage products

[edit]

The major photosynthetic products include floridoside (major product), D‐isofloridoside, digeneaside, mannitol, sorbitol, dulcitol etc.[53] Floridean starch (similar to amylopectin in land plants), a long-term storage product, is deposited freely (scattered) in the cytoplasm.[54] The concentration of photosynthetic products are altered by the environmental conditions like change in pH, the salinity of medium, change in light intensity, nutrient limitation etc.[55] When the salinity of the medium increases the production of floridoside is increased in order to prevent water from leaving the algal cells.

Pit connections and pit plugs

[edit]
Main article:Pit connection

Pit connections

[edit]

Pit connections and pit plugs are unique and distinctive features of red algae that form during the process ofcytokinesis followingmitosis.[56][3] In red algae, cytokinesis is incomplete. Typically, a small pore is left in the middle of the newly formed partition. The pit connection is formed where the daughter cells remain in contact.

Shortly after the pit connection is formed, cytoplasmic continuity is blocked by the generation of a pit plug, which is deposited in the wall gap that connects the cells.

Connections between cells having a common parent cell are called primary pit connections. Becauseapical growth is the norm in red algae, most cells have two primary pit connections, one to each adjacent cell.

Connections that exist between cells not sharing a common parent cell are labelled secondary pit connections. These connections are formed when an unequal cell division produced a nucleated daughter cell that then fuses to an adjacent cell. Patterns of secondary pit connections can be seen in the orderCeramiales.[3]

Pit plugs

[edit]

After a pit connection is formed, tubular membranes appear. A granular protein called the plug core then forms around the membranes. The tubular membranes eventually disappear. While some orders of red algae simply have a plug core, others have an associated membrane at each side of the protein mass, called cap membranes. The pit plug continues to exist between the cells until one of the cells dies. When this happens, the living cell produces a layer of wall material that seals off the plug.

Function

[edit]

The pit connections have been suggested to function as structural reinforcement, or as avenues for cell-to-cell communication and transport in red algae, however little data supports this hypothesis.[57]

Reproduction

[edit]

The reproductive cycle of red algae may be triggered by factors such as day length.[3] Red algae reproduce sexually as well as asexually. Asexual reproduction can occur through the production of spores and by vegetative means (fragmentation, cell division or propagules production).[58]

Fertilization

[edit]

Red algae lackmotilesperm. Hence, they rely on water currents to transport theirgametes to the female organs – although their sperm are capable of "gliding" to acarpogonium'strichogyne.[3] Animals also help with the dispersal and fertilization of the gametes. The first species discovered to do so is theisopod Idotea balthica.[59]

The trichogyne will continue to grow until it encounters aspermatium; once it has been fertilized, the cell wall at its base progressively thickens, separating it from the rest of the carpogonium at its base.[3]

Upon their collision, the walls of the spermatium and carpogonium dissolve. The male nucleus divides and moves into the carpogonium; one half of the nucleus merges with the carpogonium's nucleus.[3]

Thepolyaminespermine is produced, which triggers carpospore production.[3]

Spermatangia may have long, delicate appendages, which increase their chances of "hooking up".[3]

Life cycle

[edit]

They displayalternation of generations. In addition to agametophyte generation, many have twosporophyte generations, thecarposporophyte-producingcarpospores, which germinate into atetrasporophyte – this produces spore tetrads, which dissociate and germinate into gametophytes.[3] The gametophyte is typically (but not always) identical to the tetrasporophyte.[60]

Carpospores may also germinate directly intothalloid gametophytes, or the carposporophytes may produce a tetraspore without going through a (free-living) tetrasporophyte phase.[60] Tetrasporangia may be arranged in a row (zonate), in a cross (cruciate), or in a tetrad.[3]

The carposporophyte may be enclosed within the gametophyte, which may cover it with branches to form acystocarp.[60]

The two following case studies may be helpful to understand some of the life histories algae may display:

In a simple case, such asRhodochorton investiens:

In the carposporophyte: a spermatium merges with a trichogyne (a long hair on the female sexual organ), which then divides to form carposporangia – which produce carpospores.
Carpospores germinate into gametophytes, which produce sporophytes. Both of these are very similar; they produce monospores from monosporangia "just below a cross-wall in a filament"[3] and their spores are "liberated through the apex of sporangial cell."[3]
The spores of a sporophyte produce either tetrasporophytes. Monospores produced by this phase germinates immediately, with no resting phase, to form an identical copy of the parent. Tetrasporophytes may also produce a carpospore, which germinates to form another tetrasporophyte.[3]
The gametophyte may replicate asexually using monospores, but also produces nonmotile sperm in spermatangia, and a lower, nucleus-containing "egg" region of the carpogonium.[3][61]

A rather different example isPorphyra gardneri:

In itsdiploid phase, a carpospore can germinate to form a filamentous "conchocelis stage", which can also self-replicate using monospores. The conchocelis stage eventually produces conchosporangia. The resulting conchospore germinates to form a tinyprothallus withrhizoids, which develops to a cm-scale leafy thallus. This too can reproduce via monospores, which are produced inside the thallus itself.[3] They can also reproduce via spermatia, produced internally, which are released to meet a prospective carpogonium in itsconceptacle.[3]

Chemistry

[edit]
Algal groupδ13C range[62]
HCO3-usingred algae−22.5‰ to −9.6‰
CO2-using red algae−34.5‰ to −29.9‰
Brown algae−20.8‰ to −10.5‰
Green algae−20.3‰ to −8.8‰

Theδ13C values of red algae reflect their lifestyles. The largest difference results from their photosyntheticmetabolic pathway: algae that useHCO3 as a carbon source have less negativeδ13C values than those that only useCO2.[63] An additional difference of about 1.71‰ separates groupsintertidal from those below the lowest tide line, which are never exposed to atmospheric carbon. The latter group uses the more13C-negative CO2 dissolved in sea water, whereas those with access to atmospheric carbon reflect the more positive signature of this reserve.

Photosynthetic pigments of Rhodophyta are chlorophyllsa andd. Red algae are red due tophycoerythrin. They contain the sulfated polysaccharidecarrageenan in the amorphous sections of their cell walls, although red algae from the genusPorphyra containporphyran. They also produce a specific type of tannin calledphlorotannins, but in a lower amount than brown algae do.

Genomes and transcriptomes of red algae

[edit]

As enlisted inrealDB,[64] 27 complete transcriptomes and 10 complete genomes sequences of red algae are available. Listed below are the 10 complete genomes of red algae.

Fossil record

[edit]

One of the oldest fossils identified as a red alga is also the oldest fossileukaryote that belongs to a specific moderntaxon.Bangiomorpha pubescens, a multicellular fossil from arcticCanada, strongly resembles the modern red algaBangia and occurs in rocks dating to 1.05 billion years ago.[2]

Two kinds of fossils resembling red algae were found sometime between 2006 and 2011 in well-preserved sedimentary rocks in Chitrakoot, central India. The presumed red algae lie embedded in fossil mats of cyanobacteria, called stromatolites, in 1.6 billion-year-old Indian phosphorite – making them the oldest plant-like fossils ever found by about 400 million years.[76]

Red algae are important builders oflimestone reefs. The earliest such coralline algae, thesolenopores, are known from theCambrian period. Other algae of different origins filled a similar role in the latePaleozoic, and in more recent reefs.

Calcite crusts that have been interpreted as the remains of coralline red algae, date to theEdiacaran Period.[77]Thallophytes resembling coralline red algae are known from the late ProterozoicDoushantuo formation.[78]

Relationship to other algae

[edit]

Chromista andAlveolata algae (e.g., chrysophytes, diatoms, phaeophytes, dinophytes) seem to have evolved frombikonts that have acquired red algae asendosymbionts. According to this theory, over time these endosymbiont red algae have evolved to become chloroplasts. This part ofendosymbiotic theory is supported by various structural andgenetic similarities.[79]

Applications

[edit]

Human consumption

[edit]

Red algae have a long history of use as a source of nutritional, functional food ingredients and pharmaceutical substances.[80] They are a source of antioxidants including polyphenols, and phycobiliproteins and contain proteins, minerals, trace elements, vitamins and essential fatty acids.[81][82]

Traditionally, red algae are eaten raw, in salads, soups, meal and condiments. Several species are food crops, in particulardulse (Palmaria palmata)[83] and members of the genusPorphyra, variously known asnori (Japan),gim (Korea),zicai紫菜 (China), andlaver (British Isles).[84]

Red algal species such asGracilaria andLaurencia are rich inpolyunsaturated fatty acids (eicopentaenoic acid, docohexaenoic acid,arachidonic acid)[85] and have protein content up to 47% of total biomass.[80] Where a big portion of world population is getting insufficient daily iodine intake, a 150 ug/day requirement of iodine is obtained from a single gram of red algae.[86] Red algae, likeGracilaria,Gelidium,Euchema,Porphyra,Acanthophora, andPalmaria are primarily known for their industrial use for phycocolloids (agar, algin, furcellaran and carrageenan) as thickening agent, textiles, food, anticoagulants, water-binding agents, etc.[87] Dulse (Palmaria palmata) is one of the most consumed red algae and is a source of iodine, protein, magnesium and calcium.[88] Red algae's nutritional value is used for the dietary supplement ofalgas calcareas.[89]

China, Japan, Republic of Korea are the top producers of seaweeds.[90] In East and Southeast Asia,agar is most commonly produced fromGelidium amansii. These rhodophytes are easily grown and, for example,nori cultivation in Japan goes back more than three centuries.[91]

Animal feed

[edit]

Researchers in Australia discovered that limu kohu (Asparagopsis taxiformis) can reducemethane emissions incattle. In oneHawaii experiment, the reduction reached 77%. TheWorld Bank predicted the industry could be worth ~$1.1 billion by 2030. As of 2024, preparation included three stages of cultivation and drying. Australia's first commercial harvest was in 2022. Agriculture accounts for 37% of the world’s anthropogenic methane emissions. One cow produces between 154 and 264 pounds of methane/yr.[92]

Other

[edit]

Other algae-based markets include construction materials, fertilizers and other agricultural inputs, bioplastics, biofuels and fabric. Red algae also provides ecosystem services such as filtering water and carbon sequestration.[92]

Gallery

[edit]

See also

[edit]

References

[edit]
  1. ^N. J. Butterfield (2000)."Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes".Paleobiology.26 (3):386–404.Bibcode:2000Pbio...26..386B.doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2.ISSN 0094-8373.S2CID 36648568.
  2. ^abT.M. Gibson (2018)."Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis".Geology.46 (2):135–138.Bibcode:2018Geo....46..135G.doi:10.1130/G39829.1.
  3. ^abcdefghijklmnopqrLee, R.E. (2008).Phycology (4th ed.). Cambridge University Press.ISBN 978-0-521-63883-8.
  4. ^Frey, Wolfgang; Engler, Adolf; Jaklitsch, Walter M.; Kamiya, Mitsunobu; Begerow, Dominik; McTaggart, Alistair; Agerer, R.; Fischer, Eberhard; Müller, Kai, eds. (2017).Syllabus of plant families: Adolf Engler's Syllabus der Pflanzenfamilien. Part 2/2: Photoautotropic eukaryotic algae, Rhodophyta (13th ed.). Berlin: Gebr. Borntraeger Verlagsbuchhandlung.ISBN 978-3-443-01094-2.OCLC 911004269.
  5. ^abcGuiry, M.D.; Guiry, G.M. (2016)."Algaebase".www.algaebase.org. RetrievedNovember 20, 2016.
  6. ^D. Thomas (2002).Seaweeds. Life Series.Natural History Museum, London.ISBN 978-0-565-09175-0.
  7. ^Dodds, Walter Kennedy; Whiles, Matt R. (7 May 2019).Freshwater ecology : concepts and environmental applications of limnology (Third ed.). London, United Kingdom:Academic Press.ISBN 9780128132555.OCLC 1096190142.
  8. ^abSheath, Robert G. (1284). "The biology of freshwater red algae".Progress Phycological Research.3:89–157.
  9. ^"Huan Qiu Red Algae DEENR at Rutgers SEBS".deenr.rutgers.edu.
  10. ^Azua-Bustos, A; González-Silva, C; Arenas-Fajardo, C; Vicuña, R (2012)."Extreme environments as potential drivers of convergent evolution by exaptation: the Atacama Desert Coastal Range case".Front Microbiol.3: 426.doi:10.3389/fmicb.2012.00426.PMC 3526103.PMID 23267354.
  11. ^abW. J. Woelkerling (1990). "An introduction". In K. M. Cole; R. G. Sheath (eds.).Biology of the Red Algae.Cambridge University Press, Cambridge. pp. 1–6.ISBN 978-0-521-34301-5.
  12. ^Reece, Jane B.; Meyers, Noel; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V. (May 20, 2015).Campbell Biology Australian and New Zealand Edition. Pearson Higher Education AU.ISBN 978-1-4860-1229-9 – via Google Books.
  13. ^Morrissey, John; Sumich, James (June 11, 2012).Introduction to the Biology of Marine Life. Jones & Bartlett Publishers.ISBN 978-0-7637-8160-6 – via Google Books.
  14. ^Viola, R.; Nyvall, P.; Pedersén, M. (2001)."The unique features of starch metabolism in red algae".Proceedings of the Royal Society of London B.268 (1474):1417–1422.doi:10.1098/rspb.2001.1644.PMC 1088757.PMID 11429143.
  15. ^"Algae". autocww.colorado.edu. Archived fromthe original on 2012-03-15. Retrieved2012-11-30.
  16. ^M. D. Guiry."Rhodophyta: red algae".National University of Ireland, Galway. Archived fromthe original on 2007-05-04. Retrieved2007-06-28.
  17. ^Gould, S.B.; Waller, R.F.; McFadden, G.I. (2008). "Plastid Evolution".Annual Review of Plant Biology.59:491–517.doi:10.1146/annurev.arplant.59.032607.092915.PMID 18315522.S2CID 30458113.
  18. ^abMcFadden, G.I. (2001). "Primary and Secondary Endosymbiosis and the Evolution of Plastids".Journal of Phycology.37 (6):951–959.doi:10.1046/j.1529-8817.2001.01126.x.S2CID 51945442.
  19. ^"Steal My Sunshine".The Scientist Magazine®.
  20. ^Ciniglia, C.; Yoon, H.; Pollio, A.; Bhattacharya, D. (2004). "Hidden biodiversity of the extremophilic Cyanidiales red algae".Molecular Ecology.13 (7):1827–1838.Bibcode:2004MolEc..13.1827C.doi:10.1111/j.1365-294X.2004.02180.x.PMID 15189206.S2CID 21858509.
  21. ^"Plants and animals sometimes take genes from bacteria, study of algae suggests - Sciencemag.org".
  22. ^Rossoni, Alessandro W; Price, Dana C; Seger, Mark; Lyska, Dagmar; Lammers, Peter; Bhattacharya, Debashish; Weber, Andreas PM (May 31, 2019). Tautz, Diethard; Rainey, Paul B; Fournier, Gregory (eds.)."The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions".eLife.8: e45017.doi:10.7554/eLife.45017.PMC 6629376.PMID 31149898.
  23. ^Brawley, SH (2017)."Insights into the red algae and eukaryotic evolution from the genome ofPorphyra umbilicalis (Bangiophyceae, Rhodophyta)".Proceedings of the National Academy of Sciences of the United States of America.114 (31):E6361 –E6370.Bibcode:2017PNAS..114E6361B.doi:10.1073/pnas.1703088114.PMC 5547612.PMID 28716924.
  24. ^Algae: Anatomy, Biochemistry, and Biotechnology, Second Edition (page 27)
  25. ^Zuccarello, Giuseppe C.; West, John A.; Kikuchi, Norio (April 11, 2008)."PHYLOGENETIC RELATIONSHIPS WITHIN THE STYLONEMATALES (STYLONEMATOPHYCEAE, RHODOPHYTA): BIOGEOGRAPHIC PATTERNS DO NOT APPLY TOSTYLONEMA ALSIDII1".Journal of Phycology.44 (2):384–393.Bibcode:2008JPcgy..44..384Z.doi:10.1111/j.1529-8817.2008.00467.x.PMID 27041194 – via CrossRef.
  26. ^Norris, J. N.; Olsen, J. L. (1991). "Deep-water green algae from the Bahamas, includingCladophora vandenhoekii sp. nov. (Cladophorales)".Phycologia.30 (4):315–328.Bibcode:1991Phyco..30..315N.doi:10.2216/i0031-8884-30-4-315.1.ISSN 0031-8884.
  27. ^Kain, J.M.; Norton, T.A. (1990). "Marine Ecology". In Cole, J.M.; Sheath, R.G. (eds.).Biology of the Red Algae. Cambridge, U.K.: Cambridge University Press. pp. 377–423.ISBN 978-0521343015.
  28. ^Eloranta, P.; Kwandrans, J. (2004)."Indicator value of freshwater red algae in running waters for water quality assessment"(PDF).International Journal of Oceanography and Hydrobiology.XXXIII (1):47–54.ISSN 1730-413X. Archived fromthe original(PDF) on 2011-07-27.
  29. ^Vis, M.L.; Sheath, R.G.; Chiasson, W.B. (2008). "A survey of Rhodophyta and associated macroalgae from coastal streams in French Guiana".Cryptogamie Algologie.25:161–174.
  30. ^Sheath, R.G.; Hambrook, J.A. (1990). "Freshwater Ecology". In Cole, K.M.; Sheath, R.G. (eds.).Biology of the Red Algae. Cambridge, U.K.: Cambridge University Press. pp. 423–453.ISBN 978-0521343015.
  31. ^Goff, L.J. (1982). "The biology of parasitic red algae".Progress Phycological Research.1:289–369.
  32. ^Salomaki, E.D.; Lane, C.E. (2014)."Are all red algal parasites cut from the same cloth?".Acta Societatis Botanicorum Poloniae.83 (4):369–375.doi:10.5586/asbp.2014.047.
  33. ^Adl, Sina M.; et al. (2005)."The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists".Journal of Eukaryotic Microbiology.52 (5):399–451.doi:10.1111/j.1550-7408.2005.00053.x.PMID 16248873.S2CID 8060916.
  34. ^Fabien Burki; Kamran Shalchian-Tabrizi; Marianne Minge; Åsmund Skjæveland; Sergey I. Nikolaev; Kjetill S. Jakobsen; Jan Pawlowski (2007). Butler, Geraldine (ed.)."Phylogenomics Reshuffles the Eukaryotic Supergroups".PLOS ONE.2 (8): e790.Bibcode:2007PLoSO...2..790B.doi:10.1371/journal.pone.0000790.PMC 1949142.PMID 17726520.
  35. ^Burki, Fabien; Inagaki, Yuji; Bråte, Jon; Archibald, John M.; Keeling, Patrick J.; Cavalier-Smith, Thomas; Sakaguchi, Miako; Hashimoto, Tetsuo; Horak, Ales; Kumar, Surendra; Klaveness, Dag; Jakobsen, Kjetill S.; Pawlowski, Jan; Shalchian-Tabrizi, Kamran (2009)."Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates".Genome Biology and Evolution.1:231–8.doi:10.1093/gbe/evp022.PMC 2817417.PMID 20333193.
  36. ^Cavalier-Smith, Thomas (2009)."Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree".Biology Letters.6 (3):342–5.doi:10.1098/rsbl.2009.0948.PMC 2880060.PMID 20031978.
  37. ^Rogozin, I.B.; Basu, M.K.; Csürös, M. & Koonin, E.V. (2009)."Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes".Genome Biology and Evolution.1:99–113.doi:10.1093/gbe/evp011.PMC 2817406.PMID 20333181.
  38. ^Kim, E.; Graham, L.E. & Graham, Linda E. (2008). Redfield, Rosemary Jeanne (ed.)."EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata".PLOS ONE.3 (7): e2621.Bibcode:2008PLoSO...3.2621K.doi:10.1371/journal.pone.0002621.PMC 2440802.PMID 18612431.
  39. ^Nozaki, H.; Maruyama, S.; Matsuzaki, M.; Nakada, T.; Kato, S.; Misawa, K. (2009). "Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes".Molecular Phylogenetics and Evolution.53 (3):872–880.doi:10.1016/j.ympev.2009.08.015.PMID 19698794.
  40. ^Burki, Fabien; Roger, Andrew J.; Brown, Matthew W.; Simpson, Alastair G. B. (2020-01-01)."The New Tree of Eukaryotes".Trends in Ecology & Evolution.35 (1):43–55.doi:10.1016/j.tree.2019.08.008.ISSN 0169-5347.PMID 31606140.
  41. ^abcG. W. Saunders & M. H. Hommersand (2004). "Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data".American Journal of Botany.91 (10):1494–1507.doi:10.3732/ajb.91.10.1494.PMID 21652305.S2CID 9925890.
  42. ^abHwan Su Yoon; K. M. Müller; R. G. Sheath; F. D. Ott & D. Bhattacharya (2006)."Defining the major lineages of red algae (Rhodophyta)"(PDF).Journal of Phycology.42 (2):482–492.Bibcode:2006JPcgy..42..482Y.doi:10.1111/j.1529-8817.2006.00210.x.S2CID 27377549. Archived fromthe original(PDF) on 2016-03-04. Retrieved2011-12-09.
  43. ^Muñoz-Gómez, SA; Mejía-Franco, FG; Durnin, K; Colp, M; Grisdale, CJ; Archibald, JM; Ch, Slamovits (2017)."The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known".Curr Biol.27 (11):1677–1684.Bibcode:2017CBio...27E1677M.doi:10.1016/j.cub.2017.04.054.PMID 28528908.
  44. ^Yang, Eun; et al. (19 February 2016)."Divergence time estimates and the evolution of major lineages in the florideophyte red algae".Scientific Reports.
  45. ^Goff, L. J.; Coleman, A. W. (1986). "A Novel Pattern of Apical Cell Polyploidy, Sequential Polyploidy Reduction and Intercellular Nuclear Transfer in the Red Alga Polysiphonia".American Journal of Botany.73 (8):1109–1130.doi:10.1002/j.1537-2197.1986.tb08558.x.
  46. ^abcFritsch, F. E. (1945),The structure and reproduction of the algae, Cambridge: Cambridge Univ. Press,ISBN 0521050421,OCLC 223742770
  47. ^Janouškovec, Jan; Liu, Shao-Lun; Martone, Patrick T.; Carré, Wilfrid; Leblanc, Catherine; Collén, Jonas; Keeling, Patrick J. (2013)."Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and Taxonomic Utility of Plastid Markers".PLOS ONE.8 (3): e59001.Bibcode:2013PLoSO...859001J.doi:10.1371/journal.pone.0059001.PMC 3607583.PMID 23536846.
  48. ^W. J. Woelkerling (1990). "An introduction". In K. M. Cole; R. G. Sheath (eds.).Biology of the Red Algae. Cambridge University Press, Cambridge. pp. 1–6.ISBN 978-0-521-34301-5.
  49. ^Scott, J.; Cynthia, B.; Schornstein, K.; Thomas, J. (1980). "Ultrastructure of Cell Division and Reproductive Differentiation of Male Plants in the Florideophyceae (Rhodophyta): Cell Division in Polysiphonia1".Journal of Phycology.16 (4):507–524.Bibcode:1980JPcgy..16..507S.doi:10.1111/j.1529-8817.1980.tb03068.x.S2CID 83062611.
  50. ^Gantt, E (1969)."Properties and Ultrastructure of Phycoerythrin From Porphyridium cruentum12".Plant Physiology.44 (11):1629–1638.doi:10.1104/pp.44.11.1629.PMC 396315.PMID 16657250.
  51. ^Dodge, John David (January 1973).The Fine Structure of Algal Cells - 1st Edition.Academic Press.ISBN 978-0-12-219150-3. Retrieved2023-08-16.
  52. ^Tsekos, I.; Reiss, H.-D.; Orfanidis, S.; Orologas, N. (1996)."Ultrastructure and supramolecular organization of photosynthetic membranes of some marine red algae".New Phytologist.133 (4):543–551.doi:10.1111/j.1469-8137.1996.tb01923.x.
  53. ^Karsten, U.; West, J. A.; Zuccarello, G. C.; Engbrodt, R.; Yokoyama, A.; Hara, Y.; Brodie, J. (2003). "Low Molecular Weight Carbohydrates of the Bangiophycidae (Rhodophyta)1".Journal of Phycology.39 (3):584–589.Bibcode:2003JPcgy..39..584K.doi:10.1046/j.1529-8817.2003.02192.x.S2CID 84561417.
  54. ^Lee, RE (1974). "Chloroplast structure and starch grain production as phylogenetic indicators in the lower Rhodophyceae".British Phycological Journal.9 (3):291–295.doi:10.1080/00071617400650351.
  55. ^Eggert, Anja; Karsten, Ulf (2010). "Low Molecular Weight Carbohydrates in Red Algae – an Ecophysiological and Biochemical Perspective". In Seckbach, Joseph; Chapman, David J. (eds.).Red Algae in the Genomic Age. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 13. Dordrecht: Springer Netherlands. pp. 443–456.doi:10.1007/978-90-481-3795-4_24.ISBN 978-90-481-3795-4. Retrieved2023-08-16.
  56. ^Clinton JD, Scott FM, Bowler E (November–December 1961). "A Light- and Electron-Microscopic Survey of Algal Cell Walls. I. Phaeophyta and Rhodophyta".American Journal of Botany.48 (10):925–934.doi:10.2307/2439535.JSTOR 2439535.
  57. ^"Pit Plugs". FHL Marine Botany. Retrieved2016-06-30.
  58. ^In Archibald, J. M., In Simpson, A. G. B., & In Slamovits, C. H. (2017).Handbook of the protists.
  59. ^Tamisiea, Jack."In a First, Tiny Crustaceans Are Found to 'Pollinate' Seaweed like Bees of the Sea".Scientific American. Retrieved2023-08-16.
  60. ^abcKohlmeyer, J. (February 1975). "New Clues to the Possible Origin of Ascomycetes".BioScience.25 (2):86–93.doi:10.2307/1297108.JSTOR 1297108.
  61. ^Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. (2005).Biology of Plants 7th ed. W.H. Freeman and Company Publishers, New York. p. 324.ISBN 0-7167-1007-2.
  62. ^Maberly, S. C.; Raven, J. A.; Johnston, A. M. (1992). "Discrimination between12C and13C by marine plants".Oecologia.91 (4): 481.doi:10.1007/BF00650320.JSTOR 4220100.
  63. ^Maberly, SC; Raven, JA; Johnston, AM (1992). "Discrimination between 12C and 13C by marine plants".Oecologia.91 (4): 481.doi:10.1007/BF00650320.
  64. ^Chen, Fei; Zhang, Jiawei; Chen, Junhao; Li, Xiaojiang; Dong, Wei; Hu, Jian; Lin, Meigui; Liu, Yanhui; Li, Guowei; Wang, Zhengjia; Zhang, Liangsheng (2018-01-01)."realDB: a genome and transcriptome resource for the red algae (phylum Rhodophyta)".Database.2018.doi:10.1093/database/bay072.ISSN 1758-0463.PMC 6051438.PMID 30020436.
  65. ^Matsuzaki; et al. (April 2004)."Genome sequence of the ultrasmall unicellular red algaCyanidioschyzon merolae 10D".Nature.428 (6983):653–657.Bibcode:2004Natur.428..653M.doi:10.1038/nature02398.PMID 15071595.
  66. ^Nozaki; et al. (2007)."A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red algaCyanidioschyzon merolae".BMC Biology.5: 28.doi:10.1186/1741-7007-5-28.PMC 1955436.PMID 17623057.
  67. ^Schönknecht; et al. (March 2013)."Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote".Science.339 (6124):1207–1210.Bibcode:2013Sci...339.1207S.doi:10.1126/science.1231707.PMID 23471408.S2CID 5502148.
  68. ^Nakamura; et al. (2013)."The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis)".PLOS ONE.8 (3): e57122.Bibcode:2013PLoSO...857122N.doi:10.1371/journal.pone.0057122.PMC 3594237.PMID 23536760.
  69. ^Collen; et al. (2013)."Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida".PNAS.110 (13):5247–5252.Bibcode:2013PNAS..110.5247C.doi:10.1073/pnas.1221259110.PMC 3612618.PMID 23503846.
  70. ^Bhattacharya; et al. (2013)."Genome of the red alga Porphyridium purpureum".Nature Communications.4: 1941.Bibcode:2013NatCo...4.1941B.doi:10.1038/ncomms2931.PMC 3709513.PMID 23770768.
  71. ^Brawley, SH; Blouin, NA; Ficko-Blean, E; Wheeler, GL; et al. (1 August 2017)."Insights into the red algae and eukaryotic evolution from the genome ofPorphyra umbilicalis (Bangiophyceae, Rhodophyta)".Proceedings of the National Academy of Sciences of the United States of America.114 (31):E6361 –E6370.Bibcode:2017PNAS..114E6361B.doi:10.1073/pnas.1703088114.PMC 5547612.PMID 28716924.
  72. ^Ho, C.-L.; Lee, W.-K.; Lim, E.-L. (2018)."Unraveling the nuclear and chloroplast genomes of an agar producing red macroalga, Gracilaria changii (Rhodophyta, Gracilariales)".Genomics.110 (2):124–133.doi:10.1016/j.ygeno.2017.09.003.PMID 28890206.
  73. ^Qiu, H.; Price, D. C.; Weber, A. P. M.; Reeb, V.; Yang, E. C.; Lee, J. M.; Bhattacharya, D. (2013)."Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea".Current Biology.23 (19):R865 –R866.Bibcode:2013CBio...23.R865Q.doi:10.1016/j.cub.2013.08.046.PMID 24112977.
  74. ^Zhou, W.; Hu, Y.; Sui, Z.; Fu, F.; Wang, J.; Chang, L.; Li, B. (2013)."Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing".PLOS ONE.8 (7): e69909.Bibcode:2013PLoSO...869909Z.doi:10.1371/journal.pone.0069909.PMC 3713064.PMID 23875008.
  75. ^JunMo Lee, Eun Chan Yang, Louis Graf, Ji Hyun Yang, Huan Qiu, Udi Zelzion, Cheong Xin Chan, Timothy G Stephens, Andreas P M Weber, Ga Hun Boo, Sung Min Boo, Kyeong Mi Kim, Younhee Shin, Myunghee Jung, Seung Jae Lee, Hyung-Soon Yim, Jung-Hyun Lee, Debashish Bhattacharya, Hwan Su Yoon, "Analysis of the Draft Genome of the Red Seaweed Gracilariopsis chorda Provides Insights into Genome Size Evolution" inRhodophyta, Molecular Biology and Evolution, Volume 35, Issue 8, August 2018, pp. 1869–1886,doi:10.1093/molbev/msy081
  76. ^Bengtson, S; Sallstedt, T; Belivanova, V; Whitehouse, M (2017)."Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae".PLOS Biol.15 (3): e2000735.doi:10.1371/journal.pbio.2000735.PMC 5349422.PMID 28291791.
  77. ^Grant, S. W. F.; Knoll, A. H.; Germs, G. J. B. (1991). "Probable Calcified Metaphytes in the Latest Proterozoic Nama Group, Namibia: Origin, Diagenesis, and Implications".Journal of Paleontology.65 (1):1–18.Bibcode:1991JPal...65....1G.doi:10.1017/S002233600002014X.JSTOR 1305691.PMID 11538648.S2CID 26792772.
  78. ^Yun, Z.; Xun-lal, Y. (1992). "New data on multicellular thallophytes and fragments of cellular tissues from Late Proterozoic phosphate rocks, South China".Lethaia.25 (1):1–18.Bibcode:1992Letha..25....1Y.doi:10.1111/j.1502-3931.1992.tb01788.x.
  79. ^Summarised inCavalier-Smith, Thomas (April 2000). "Membrane heredity and early chloroplast evolution".Trends in Plant Science.5 (4):174–182.doi:10.1016/S1360-1385(00)01598-3.PMID 10740299.
  80. ^abWang, T., Jónsdóttir, R., Kristinsson, H. G., Hreggvidsson, G. O., Jónsson, J. Ó., Thorkelsson, G., & Ólafsdóttir, G. (2010). "Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata".LWT – Food Science and Technology, 43(9), 1387–1393.doi:10.1016/j.lwt.2010.05.010
  81. ^MacArtain, P.; Gill, C. I. R.; Brooks, M.; Campbell, R.; Rowland, I. R. (2007)."Nutritional Value of Edible Seaweeds".Nutrition Reviews.65 (12):535–543.doi:10.1111/j.1753-4887.2007.tb00278.x.PMID 18236692.S2CID 494897.
  82. ^Becker, E.W. (March 2007)."Micro-algae as a source of protein".Biotechnology Advances.25 (2):207–210.doi:10.1016/j.biotechadv.2006.11.002.PMID 17196357.
  83. ^"Dulse:Palmaria palmata". Quality Sea Veg. Archived fromthe original on 2012-02-22. Retrieved2007-06-28.
  84. ^T. F. Mumford & A. Muira (1988). "Porphyra as food: cultivation and economics". In C. A. Lembi & J. Waaland (eds.).Algae and Human Affairs.Cambridge University Press, Cambridge.ISBN 978-0-521-32115-0.
  85. ^Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo, P., Filho, J. M., Torres, R. P., & Pinto, E. (2010). "Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species".Food Chemistry, 120(2), 585–590.doi:10.1016/j.foodchem.2009.10.028
  86. ^Hoek, C. van den, Mann, D.G. and Jahns, H.M. (1995).Algae An Introduction to Phycology. Cambridge University Press, Cambridge.ISBN 0521304199
  87. ^Dhargalkar VK, Verlecar XN. "Southern Ocean Seaweeds: a resource for exploration in food and drugs".Aquaculture 2009; 287: 229–242.
  88. ^"On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr)".researchgate.net. December 2013.
  89. ^Marone, Palma Ann; Yasmin, Taharat; Gupta, Ramesh C.; Bagchi, Manashi (July 2010)."Safety and toxicological evaluation of AlgaeCal ® (AC), a novel plant-based calcium supplement".Toxicology Mechanisms and Methods.20 (6):334–344.doi:10.3109/15376516.2010.490966.ISSN 1537-6516.PMID 20528255.
  90. ^Manivannan, K., Thirumaran, G., Karthikai, D.G., Anantharaman. P., Balasubramanian, P. (2009). "Proximate Composition of Different Group of Seaweeds from Vedalai Coastal Waters (Gulf of Mannar): Southeast Coast of India".Middle-East J. Scientific Res., 4: 72–77.
  91. ^"Nori / Gim / Kim".www.clovegarden.com. Retrieved2024-12-23.
  92. ^abHeaton, Thomas (2024-06-03)."Cattle Are A Major Source Of Greenhouse Gas Emissions. Hawaii Seaweed Could Change That".Honolulu Civil Beat. Retrieved2024-06-04.

External links

[edit]
Extantlife phyla/divisions by domain
Bacteria
Archaea
Eukaryote
"Protist"
Fungi
Plant
Animal
Incertae sedis
Eukaryote classification
Amoebozoa
Holomycota
Filozoa
Choanozoa
Haptista
    SAR    
Rhizaria
Alveolata
Myzozoa
Stramenopiles
Bigyra*
Gyrista
Pancryptista
Cryptista
Archaeplastida
(plantssensu lato)
Viridiplantae
(green plants or
plantssensu stricto)
Streptophyta
Discoba
Discicristata
Metamonada*
Malawimonada
Provora
Hemimastigophora
Ancyromonadida
CRuMs
Classification ofArchaeplastida orPlantaes.l.
Archaeplastida
Picozoa
Rhodelphidia
Rhodophyta
(red algae)
Glaucophyta
incertae sedis
Viridiplantae
orPlantaes.s.
(green algae &
land plants)
Prasinodermophyta
 Chlorophyta
Prasinophytina
Chlorophytina
Streptophyta
Phragmoplastophyta
Anydrophyta
Embryophyta
(land plants)
  • (see below↓)
Bryophytes
Marchantiophyta
(liverworts)
Anthocerotophyta
(hornworts)
Bryophyta
(mosses)
 Polysporangiophytes
Protracheophytes*
Tracheophytes
(vascular plants)
Paratracheophytes*
Eutracheophytes
Lycophytes
Euphyllophytes
Moniliformopses
Lignophytes
Progymnosperms*
Spermatophytes
(seed plants)
Pteridosperms*
(seed ferns)
and other extinct
seed plant groups
Acrogymnospermae
(living gymnosperms)
Angiospermae
(flowering plants)
Rhodophyta
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Red_algae&oldid=1277802636"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp