Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Raphael Weldon

From Wikipedia, the free encyclopedia
British evolutionary biologist (1860–1906)

Walter Frank Raphael Weldon
Raphael Weldon
Born(1860-03-15)15 March 1860
London, England
Died13 April 1906(1906-04-13) (aged 46)
Oxford, England
Alma materSt John's College, Cambridge
AwardsFellow of the Royal Society
Scientific career
FieldsZoology,biometry
InstitutionsSt John's College, Cambridge
University College London
Oxford University
Academic advisorsFrancis Maitland Balfour

Walter Frank Raphael WeldonFRS (15 March 1860 – 13 April 1906), was an Englishevolutionary biologist and a founder ofbiometry. He was the joint founding editor ofBiometrika, withFrancis Galton andKarl Pearson.

Family

[edit]

Weldon was the second child of the journalist and industrial chemist,Walter Weldon, and his wife Anne Cotton. On 13 March 1883, Weldon marriedFlorence Tebb (1858–1936), daughter of the social reformerWilliam Tebb. Having studied mathematics atGirton College, Cambridge, Florence was to act as the 'computer' for Weldon's research into biological variation.[1][2][3]

Life and education

[edit]

Medicine was his intended career and he spent the academic year 1876-1877 atUniversity College London. Among his teachers were the zoologistE. Ray Lankester and the mathematicianOlaus Henrici. In the following year he transferred toKing's College London and then toSt John's College, Cambridge in 1878.[4]

There Weldon studied with the developmental morphologistFrancis Balfour who influenced him greatly; Weldon gave up his plans for a career in medicine. In 1881 he gained a first-class honours degree in the Natural Science Tripos; in the autumn he left for theNaples Zoological Station to begin the first of his studies on marine biological organisms.

On his religious views, he considered himself an agnostic.[5] He died in 1906 of acute pneumonia, and is buried at Holywell Church, Oxford.

Career

[edit]
Bust in theOxford University Museum

Upon returning to Cambridge in 1882, he was appointed university lecturer inInvertebrateMorphology. Weldon's work was centred on the development of a fuller understanding of marine biological phenomena and selective death rates of these organisms.

In 1889 Weldon succeeded Lankester in the Jodrell Chair of Zoology atUniversity College London,[6] and as curator of what is now theGrant Museum of Zoology,[7] and was elected to theRoyal Society in 1890. Royal Society records show his election supporters included the great zoologists of the day:Huxley, Lankester,Poulton,Newton,Flower,Romanes and others.

His interests were changing from morphology to problems in variation and organic correlation. He began using the statistical techniques thatFrancis Galton had developed for he had come to the view that "the problem of animal evolution is essentially a statistical problem." Weldon began working with his University College colleague, the mathematicianKarl Pearson. Their partnership was very important to both men and survived Weldon's move to theLinacre Chair of Zoology atOxford University in 1899. In the years of their collaboration Pearson laid the foundations of modern statistics. Magnello emphasises this side of Weldon's career. In 1900 he took the DSc degree and as Linacre Professor he also held a Fellowship atMerton College, Oxford.[8]

Weldon was one of the first scientists to provide evidence of stabilizing and directionalselection in natural populations.[9]

By 1893 a Royal Society Committee included Weldon,Galton andKarl Pearson 'For the Purpose of conducting Statistical Enquiry into the Variability of Organisms'. In an 1894 paperSome remarks on variation in plants and animals arising from the work of the Royal Society Committee, Weldon wrote:

"... the questions raised by the Darwinian hypothesis are purely statistical, and the statistical method is the only one at present obvious by which that hypothesis can be experimentally checked."

In 1900 the work ofGregor Mendel was rediscovered and this precipitated a conflict between Weldon and Pearson on the one side andWilliam Bateson on the other. Bateson, who had been taught by Weldon, took a very strong line against the biometricians. This bitter dispute ranged across substantive issues of the nature ofevolution and methodological issues such as the value of the statistical method.Will Provine[10] and Gregory Radick[11] give detailed accounts of the controversy. The debate lost much of its intensity with the death of Weldon in 1906, though the general debate between the biometricians and the Mendelians continued until the creation of themodern evolutionary synthesis in the 1930s.

After his death, theWeldon Memorial Prize was established by the University of Oxford in his honour; it is awarded annually.

Weldon's dice

[edit]

In 1894, Weldon rolled a set of 12 dice 26,306 times.[12] He collected the data in part, 'to judge whether the differences between a series of group frequencies and a theoretical law, taken as a whole, were or were not more than might be attributed to the chance fluctuations of random sampling.' Weldon's dice data were used by Karl Pearson[13] in his pioneering paper on the chi-squared statistic.

Notes

[edit]
  1. ^Davis, Lea K. (27 October 2022)."Weldon, Bateson, and the origins of genetics: Reflections on the unraveling and rebuilding of a scientific community".PLOS Genetics.18 (10) e1010379.doi:10.1371/journal.pgen.1010379.ISSN 1553-7390.PMC 9612466.PMID 36301806.
  2. ^Grier, David Alan (1 November 2013).When Computers Were Human. Princeton University Press.ISBN 978-1-4008-4936-9.
  3. ^Flood, Raymond, ed. (29 September 2011).Mathematics in Victorian Britain. OUP Oxford.ISBN 978-0-19-162794-1.
  4. ^"Weldon, Walter Frank Raphael (WLDN878WF)".A Cambridge Alumni Database. University of Cambridge.
  5. ^Karl Pearson (2011).Walter Frank Raphael Weldon 1860–1906: A Memoir Reprinted from Biometrika. Cambridge University Press. p. 5.ISBN 978-1-107-60122-2.He was through the many years the present writer knew him, like his hero Huxley, a confirmed Agnostic.
  6. ^Bourne, Gilbert Charles (1912)."Weldon, Walter Frank Raphael" .Dictionary of National Biography (2nd supplement). Vol. 3. pp. 629–631.
  7. ^"On the Origin of Our Specimens: The Weldon Years | UCL Museums & Collections Blog".blogs.ucl.ac.uk. Retrieved9 November 2017.
  8. ^Levens, R.G.C., ed. (1964).Merton College Register 1900–1964. Oxford: Basil Blackwell. p. 5.
  9. ^Amitabh, Joshi. (2017).Weldon's Search for a Direct Proof of Natural Selection and the Tortuous Path to the Neo-Darwinian Synthesis.Resonance 22 (6): 525-548.
  10. ^W.B. Provine (1971). The origins of theoretical population genetics. University of Chicago Press.
  11. ^Radick, Gregory (2023).Disputed inheritance: the battle over Mendel and the future of biology. Chicago: The University of Chicago Press.ISBN 978-0-226-82272-3.
  12. ^Kemp, A.W., and C.D. Kemp. (1991). Weldon's dice data revisited,The American Statistician, 45(3):216–222.doi:10.2307/2684294
  13. ^Pearson, Karl (1900). On the criterion that a given system of derivations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.Philosophical Magazine, 5(50), 157–175.

References

[edit]

External links

[edit]
EnglishWikisource has original works by or about:
International
National
Academics
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Raphael_Weldon&oldid=1314633013"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp