Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Random measure

From Wikipedia, the free encyclopedia
Measure in measure theory

Inprobability theory, arandom measure is ameasure-valuedrandom element.[1][2] Random measures are for example used in the theory ofrandom processes, where they form many importantpoint processes such asPoisson point processes andCox processes.

Definition

[edit]

Random measures can be defined astransition kernels or asrandom elements. Both definitions are equivalent. For the definitions, letE{\displaystyle E} be aseparablecomplete metric space and letE{\displaystyle {\mathcal {E}}} be itsBorelσ{\displaystyle \sigma }-algebra. (The most common example of a separable complete metric space isRn{\displaystyle \mathbb {R} ^{n}}.)

As a transition kernel

[edit]

A random measureζ{\displaystyle \zeta } is a (a.s.)locally finitetransition kernel from an abstractprobability space(Ω,A,P){\displaystyle (\Omega ,{\mathcal {A}},P)} to(E,E){\displaystyle (E,{\mathcal {E}})}.[3]

Being a transition kernel means that

ωζ(ω,B){\displaystyle \omega \mapsto \zeta (\omega ,B)}
ismeasurable from(Ω,A){\displaystyle (\Omega ,{\mathcal {A}})} to(R,B(R)){\displaystyle (\mathbb {R} ,{\mathcal {B}}(\mathbb {R} ))}
Bζ(ω,B)(BE){\displaystyle B\mapsto \zeta (\omega ,B)\quad (B\in {\mathcal {E}})}
is ameasure on(E,E){\displaystyle (E,{\mathcal {E}})}

Being locally finite means that the measures

Bζ(ω,B){\displaystyle B\mapsto \zeta (\omega ,B)}

satisfyζ(ω,B~)<{\displaystyle \zeta (\omega ,{\tilde {B}})<\infty } for all bounded measurable setsB~E{\displaystyle {\tilde {B}}\in {\mathcal {E}}}and for allωΩ{\displaystyle \omega \in \Omega } except someP{\displaystyle P}-null set

In the context ofstochastic processes there is the related concept of astochastic kernel, probability kernel, Markov kernel.

As a random element

[edit]

Define

M~:={μμ is measure on (E,E)}{\displaystyle {\tilde {\mathcal {M}}}:=\{\mu \mid \mu {\text{ is measure on }}(E,{\mathcal {E}})\}}

and the subset of locally finite measures by

M:={μM~μ(B~)< for all bounded measurable B~E}{\displaystyle {\mathcal {M}}:=\{\mu \in {\tilde {\mathcal {M}}}\mid \mu ({\tilde {B}})<\infty {\text{ for all bounded measurable }}{\tilde {B}}\in {\mathcal {E}}\}}

For all bounded measurableB~{\displaystyle {\tilde {B}}}, define the mappings

IB~:μμ(B~){\displaystyle I_{\tilde {B}}\colon \mu \mapsto \mu ({\tilde {B}})}

fromM~{\displaystyle {\tilde {\mathcal {M}}}} toR{\displaystyle \mathbb {R} }. LetM~{\displaystyle {\tilde {\mathbb {M} }}} be theσ{\displaystyle \sigma }-algebra induced by the mappingsIB~{\displaystyle I_{\tilde {B}}} onM~{\displaystyle {\tilde {\mathcal {M}}}} andM{\displaystyle \mathbb {M} } theσ{\displaystyle \sigma }-algebra induced by the mappingsIB~{\displaystyle I_{\tilde {B}}} onM{\displaystyle {\mathcal {M}}}. Note thatM~|M=M{\displaystyle {\tilde {\mathbb {M} }}|_{\mathcal {M}}=\mathbb {M} }.

A random measure is a random element from(Ω,A,P){\displaystyle (\Omega ,{\mathcal {A}},P)} to(M~,M~){\displaystyle ({\tilde {\mathcal {M}}},{\tilde {\mathbb {M} }})} that almost surely takes values in(M,M){\displaystyle ({\mathcal {M}},\mathbb {M} )}[3][4][5]

Basic related concepts

[edit]

Intensity measure

[edit]
Main article:intensity measure

For a random measureζ{\displaystyle \zeta }, the measureEζ{\displaystyle \operatorname {E} \zeta } satisfying

E[f(x)ζ(dx)]=f(x)Eζ(dx){\displaystyle \operatorname {E} \left[\int f(x)\;\zeta (\mathrm {d} x)\right]=\int f(x)\;\operatorname {E} \zeta (\mathrm {d} x)}

for every positive measurable functionf{\displaystyle f} is called the intensity measure ofζ{\displaystyle \zeta }. The intensity measure exists for every random measure and is as-finite measure.

Supporting measure

[edit]

For a random measureζ{\displaystyle \zeta }, the measureν{\displaystyle \nu } satisfying

f(x)ζ(dx)=0 a.s.  iff f(x)ν(dx)=0{\displaystyle \int f(x)\;\zeta (\mathrm {d} x)=0{\text{ a.s. }}{\text{ iff }}\int f(x)\;\nu (\mathrm {d} x)=0}

for all positive measurable functions is called thesupporting measure ofζ{\displaystyle \zeta }. The supporting measure exists for all random measures and can be chosen to be finite.

Laplace transform

[edit]

For a random measureζ{\displaystyle \zeta }, theLaplace transform is defined as

Lζ(f)=E[exp(f(x)ζ(dx))]{\displaystyle {\mathcal {L}}_{\zeta }(f)=\operatorname {E} \left[\exp \left(-\int f(x)\;\zeta (\mathrm {d} x)\right)\right]}

for every positive measurable functionf{\displaystyle f}.

Basic properties

[edit]

Measurability of integrals

[edit]

For a random measureζ{\displaystyle \zeta }, the integrals

f(x)ζ(dx){\displaystyle \int f(x)\zeta (\mathrm {d} x)}

andζ(A):=1A(x)ζ(dx){\displaystyle \zeta (A):=\int \mathbf {1} _{A}(x)\zeta (\mathrm {d} x)}

for positiveE{\displaystyle {\mathcal {E}}}-measurablef{\displaystyle f} are measurable, so they arerandom variables.

Uniqueness

[edit]

The distribution of a random measure is uniquely determined by the distributions of

f(x)ζ(dx){\displaystyle \int f(x)\zeta (\mathrm {d} x)}

for all continuous functions with compact supportf{\displaystyle f} onE{\displaystyle E}. For a fixedsemiringIE{\displaystyle {\mathcal {I}}\subset {\mathcal {E}}} that generatesE{\displaystyle {\mathcal {E}}} in the sense thatσ(I)=E{\displaystyle \sigma ({\mathcal {I}})={\mathcal {E}}}, the distribution of a random measure is also uniquely determined by the integral over all positivesimpleI{\displaystyle {\mathcal {I}}}-measurable functionsf{\displaystyle f}.[6]

Decomposition

[edit]

A measure generally might be decomposed as:

μ=μd+μa=μd+n=1NκnδXn,{\displaystyle \mu =\mu _{d}+\mu _{a}=\mu _{d}+\sum _{n=1}^{N}\kappa _{n}\delta _{X_{n}},}

Hereμd{\displaystyle \mu _{d}} is a diffuse measure without atoms, whileμa{\displaystyle \mu _{a}} is a purely atomic measure.

Random counting measure

[edit]

A random measure of the form:

μ=n=1NδXn,{\displaystyle \mu =\sum _{n=1}^{N}\delta _{X_{n}},}

whereδ{\displaystyle \delta } is theDirac measure andXn{\displaystyle X_{n}} are random variables, is called apoint process[1][2] orrandom counting measure. This random measure describes the set ofN particles, whose locations are given by the (generally vector valued) random variablesXn{\displaystyle X_{n}}. The diffuse componentμd{\displaystyle \mu _{d}} is null for a counting measure.

In the formal notation of above a random counting measure is a map from a probability space to themeasurable space(NX{\displaystyle N_{X}}, B(NX){\displaystyle {\mathfrak {B}}(N_{X})}). HereNX{\displaystyle N_{X}} is the space of all boundedly finite integer-valued measuresNMX{\displaystyle N\in M_{X}} (calledcounting measures).

The definitions of expectation measure, Laplace functional, moment measures and stationarity for random measures follow those ofpoint processes. Random measures are useful in the description and analysis ofMonte Carlo methods, such asMonte Carlo numerical quadrature andparticle filters.[7]

See also

[edit]

References

[edit]
  1. ^abKallenberg, O.,Random Measures, 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986).ISBN 0-12-394960-2MR 0854102. An authoritative but rather difficult reference.
  2. ^abJan Grandell, Point processes and random measures,Advances in Applied Probability 9 (1977) 502-526.MR 0478331JSTOR A nice and clear introduction.
  3. ^abKallenberg, Olav (2017).Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 1.doi:10.1007/978-3-319-41598-7.ISBN 978-3-319-41596-3.
  4. ^Klenke, Achim (2008).Probability Theory. Berlin: Springer. p. 526.doi:10.1007/978-1-84800-048-3.ISBN 978-1-84800-047-6.
  5. ^Daley, D. J.; Vere-Jones, D. (2003).An Introduction to the Theory of Point Processes. Probability and its Applications.doi:10.1007/b97277.ISBN 0-387-95541-0.
  6. ^Kallenberg, Olav (2017).Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 52.doi:10.1007/978-3-319-41598-7.ISBN 978-3-319-41596-3.
  7. ^"Crisan, D.,Particle Filters: A Theoretical Perspective, inSequential Monte Carlo in Practice, Doucet, A., de Freitas, N. and Gordon, N. (Eds), Springer, 2001,ISBN 0-387-95146-6
Basic concepts
Sets
Types ofmeasures
Particular measures
Maps
Main results
Other results
ForLebesgue measure
Applications & related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Random_measure&oldid=1321580369"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp