Measure in measure theory
Inprobability theory , arandom measure is ameasure -valuedrandom element .[ 1] [ 2] Random measures are for example used in the theory ofrandom processes , where they form many importantpoint processes such asPoisson point processes andCox processes .
Random measures can be defined astransition kernels or asrandom elements . Both definitions are equivalent. For the definitions, letE {\displaystyle E} be aseparable complete metric space and letE {\displaystyle {\mathcal {E}}} be itsBorelσ {\displaystyle \sigma } -algebra . (The most common example of a separable complete metric space isR n {\displaystyle \mathbb {R} ^{n}} .)
As a transition kernel [ edit ] A random measureζ {\displaystyle \zeta } is a (a.s. )locally finite transition kernel from an abstractprobability space ( Ω , A , P ) {\displaystyle (\Omega ,{\mathcal {A}},P)} to( E , E ) {\displaystyle (E,{\mathcal {E}})} .[ 3]
Being a transition kernel means that
ω ↦ ζ ( ω , B ) {\displaystyle \omega \mapsto \zeta (\omega ,B)} ismeasurable from( Ω , A ) {\displaystyle (\Omega ,{\mathcal {A}})} to( R , B ( R ) ) {\displaystyle (\mathbb {R} ,{\mathcal {B}}(\mathbb {R} ))} B ↦ ζ ( ω , B ) ( B ∈ E ) {\displaystyle B\mapsto \zeta (\omega ,B)\quad (B\in {\mathcal {E}})} is ameasure on( E , E ) {\displaystyle (E,{\mathcal {E}})} Being locally finite means that the measures
B ↦ ζ ( ω , B ) {\displaystyle B\mapsto \zeta (\omega ,B)} satisfyζ ( ω , B ~ ) < ∞ {\displaystyle \zeta (\omega ,{\tilde {B}})<\infty } for all bounded measurable setsB ~ ∈ E {\displaystyle {\tilde {B}}\in {\mathcal {E}}} and for allω ∈ Ω {\displaystyle \omega \in \Omega } except someP {\displaystyle P} -null set
In the context ofstochastic processes there is the related concept of astochastic kernel, probability kernel, Markov kernel .
As a random element [ edit ] Define
M ~ := { μ ∣ μ is measure on ( E , E ) } {\displaystyle {\tilde {\mathcal {M}}}:=\{\mu \mid \mu {\text{ is measure on }}(E,{\mathcal {E}})\}} and the subset of locally finite measures by
M := { μ ∈ M ~ ∣ μ ( B ~ ) < ∞ for all bounded measurable B ~ ∈ E } {\displaystyle {\mathcal {M}}:=\{\mu \in {\tilde {\mathcal {M}}}\mid \mu ({\tilde {B}})<\infty {\text{ for all bounded measurable }}{\tilde {B}}\in {\mathcal {E}}\}} For all bounded measurableB ~ {\displaystyle {\tilde {B}}} , define the mappings
I B ~ : μ ↦ μ ( B ~ ) {\displaystyle I_{\tilde {B}}\colon \mu \mapsto \mu ({\tilde {B}})} fromM ~ {\displaystyle {\tilde {\mathcal {M}}}} toR {\displaystyle \mathbb {R} } . LetM ~ {\displaystyle {\tilde {\mathbb {M} }}} be theσ {\displaystyle \sigma } -algebra induced by the mappingsI B ~ {\displaystyle I_{\tilde {B}}} onM ~ {\displaystyle {\tilde {\mathcal {M}}}} andM {\displaystyle \mathbb {M} } theσ {\displaystyle \sigma } -algebra induced by the mappingsI B ~ {\displaystyle I_{\tilde {B}}} onM {\displaystyle {\mathcal {M}}} . Note thatM ~ | M = M {\displaystyle {\tilde {\mathbb {M} }}|_{\mathcal {M}}=\mathbb {M} } .
A random measure is a random element from( Ω , A , P ) {\displaystyle (\Omega ,{\mathcal {A}},P)} to( M ~ , M ~ ) {\displaystyle ({\tilde {\mathcal {M}}},{\tilde {\mathbb {M} }})} that almost surely takes values in( M , M ) {\displaystyle ({\mathcal {M}},\mathbb {M} )} [ 3] [ 4] [ 5]
Basic related concepts [ edit ] For a random measureζ {\displaystyle \zeta } , the measureE ζ {\displaystyle \operatorname {E} \zeta } satisfying
E [ ∫ f ( x ) ζ ( d x ) ] = ∫ f ( x ) E ζ ( d x ) {\displaystyle \operatorname {E} \left[\int f(x)\;\zeta (\mathrm {d} x)\right]=\int f(x)\;\operatorname {E} \zeta (\mathrm {d} x)} for every positive measurable functionf {\displaystyle f} is called the intensity measure ofζ {\displaystyle \zeta } . The intensity measure exists for every random measure and is as-finite measure .
For a random measureζ {\displaystyle \zeta } , the measureν {\displaystyle \nu } satisfying
∫ f ( x ) ζ ( d x ) = 0 a.s. iff ∫ f ( x ) ν ( d x ) = 0 {\displaystyle \int f(x)\;\zeta (\mathrm {d} x)=0{\text{ a.s. }}{\text{ iff }}\int f(x)\;\nu (\mathrm {d} x)=0} for all positive measurable functions is called thesupporting measure ofζ {\displaystyle \zeta } . The supporting measure exists for all random measures and can be chosen to be finite.
For a random measureζ {\displaystyle \zeta } , theLaplace transform is defined as
L ζ ( f ) = E [ exp ( − ∫ f ( x ) ζ ( d x ) ) ] {\displaystyle {\mathcal {L}}_{\zeta }(f)=\operatorname {E} \left[\exp \left(-\int f(x)\;\zeta (\mathrm {d} x)\right)\right]} for every positive measurable functionf {\displaystyle f} .
Measurability of integrals [ edit ] For a random measureζ {\displaystyle \zeta } , the integrals
∫ f ( x ) ζ ( d x ) {\displaystyle \int f(x)\zeta (\mathrm {d} x)} andζ ( A ) := ∫ 1 A ( x ) ζ ( d x ) {\displaystyle \zeta (A):=\int \mathbf {1} _{A}(x)\zeta (\mathrm {d} x)}
for positiveE {\displaystyle {\mathcal {E}}} -measurablef {\displaystyle f} are measurable, so they arerandom variables .
The distribution of a random measure is uniquely determined by the distributions of
∫ f ( x ) ζ ( d x ) {\displaystyle \int f(x)\zeta (\mathrm {d} x)} for all continuous functions with compact supportf {\displaystyle f} onE {\displaystyle E} . For a fixedsemiring I ⊂ E {\displaystyle {\mathcal {I}}\subset {\mathcal {E}}} that generatesE {\displaystyle {\mathcal {E}}} in the sense thatσ ( I ) = E {\displaystyle \sigma ({\mathcal {I}})={\mathcal {E}}} , the distribution of a random measure is also uniquely determined by the integral over all positivesimple I {\displaystyle {\mathcal {I}}} -measurable functionsf {\displaystyle f} .[ 6]
A measure generally might be decomposed as:
μ = μ d + μ a = μ d + ∑ n = 1 N κ n δ X n , {\displaystyle \mu =\mu _{d}+\mu _{a}=\mu _{d}+\sum _{n=1}^{N}\kappa _{n}\delta _{X_{n}},} Hereμ d {\displaystyle \mu _{d}} is a diffuse measure without atoms, whileμ a {\displaystyle \mu _{a}} is a purely atomic measure.
Random counting measure [ edit ] A random measure of the form:
μ = ∑ n = 1 N δ X n , {\displaystyle \mu =\sum _{n=1}^{N}\delta _{X_{n}},} whereδ {\displaystyle \delta } is theDirac measure andX n {\displaystyle X_{n}} are random variables, is called apoint process [ 1] [ 2] orrandom counting measure . This random measure describes the set ofN particles, whose locations are given by the (generally vector valued) random variablesX n {\displaystyle X_{n}} . The diffuse componentμ d {\displaystyle \mu _{d}} is null for a counting measure.
In the formal notation of above a random counting measure is a map from a probability space to themeasurable space (N X {\displaystyle N_{X}} , B ( N X ) {\displaystyle {\mathfrak {B}}(N_{X})} ) . HereN X {\displaystyle N_{X}} is the space of all boundedly finite integer-valued measuresN ∈ M X {\displaystyle N\in M_{X}} (calledcounting measures ).
The definitions of expectation measure, Laplace functional, moment measures and stationarity for random measures follow those ofpoint processes . Random measures are useful in the description and analysis ofMonte Carlo methods , such asMonte Carlo numerical quadrature andparticle filters .[ 7]
^a b Kallenberg, O. ,Random Measures , 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986).ISBN 0-12-394960-2 MR 0854102 . An authoritative but rather difficult reference.^a b Jan Grandell, Point processes and random measures,Advances in Applied Probability 9 (1977) 502-526.MR 0478331 JSTOR A nice and clear introduction. ^a b Kallenberg, Olav (2017).Random Measures, Theory and Applications . Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 1.doi :10.1007/978-3-319-41598-7 .ISBN 978-3-319-41596-3 .^ Klenke, Achim (2008).Probability Theory . Berlin: Springer. p. 526.doi :10.1007/978-1-84800-048-3 .ISBN 978-1-84800-047-6 . ^ Daley, D. J.; Vere-Jones, D. (2003).An Introduction to the Theory of Point Processes . Probability and its Applications.doi :10.1007/b97277 .ISBN 0-387-95541-0 . ^ Kallenberg, Olav (2017).Random Measures, Theory and Applications . Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 52.doi :10.1007/978-3-319-41598-7 .ISBN 978-3-319-41596-3 .^ "Crisan, D.,Particle Filters: A Theoretical Perspective , inSequential Monte Carlo in Practice, Doucet, A., de Freitas, N. and Gordon, N. (Eds), Springer, 2001,ISBN 0-387-95146-6