Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quaternary

From Wikipedia, the free encyclopedia
(Redirected fromQuaternary period)
Third and current period of the Cenozoic Era, from 2.58 million years ago to the present
For other uses, seeQuaternary (disambiguation).

Quaternary
2.58 – 0Ma
A map of Earth as it appears during the current Quaternary period, Holocene epoch
Chronology
−2.6 —
−2.4 —
−2.2 —
−2 —
−1.8 —
−1.6 —
−1.4 —
−1.2 —
−1 —
−0.8 —
−0.6 —
−0.4 —
−0.2 —
0 —
 
 
 
 
 
 
 
Subdivision of the Quaternary according to theICS, as of 2023.[1]
Vertical axis scale:Millions of years ago
Etymology
Name formalityFormal
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitPeriod
Stratigraphic unitSystem
Time span formalityFormal
Lower boundary definition
Lower boundary GSSPMonte San Nicola Section,Gela,Sicily,Italy
37°08′49″N14°12′13″E / 37.1469°N 14.2035°E /37.1469; 14.2035
Lower GSSP ratified2009 (as base of Quaternary and Pleistocene)[2]
Upper boundary definitionPresent day
Upper boundary GSSPN/A
Upper GSSP ratifiedN/A
Atmospheric and climatic data
Mean atmosphericO2 contentc. 20.8 vol %
(100 % of modern)
Mean atmosphericCO2 contentc. 250ppm
(0.9 times pre-industrial)
Mean surface temperaturec. 14 °C
(0.5 °C above pre-industrial)

TheQuaternary (/kwəˈtɜːrnəri,ˈkwɒtərnɛri/kwə-TUR-nə-ree,KWOT-ər-nerr-ee) is the current and most recent of the threeperiods of theCenozoicEra in thegeologic time scale of theInternational Commission on Stratigraphy (ICS), as well as the current and most recent of the twelve periods of thePhanerozoic eon.[3] It follows theNeogene Period and spans from 2.58 million years ago to the present.[4] The Quaternary Period is divided into two epochs: thePleistocene (2.58 million years ago to 11.7 thousand years ago) and theHolocene (11.7 thousand years ago to today); a proposed third epoch, theAnthropocene, was rejected in 2024 byIUGS, the governing body of the ICS.

The Quaternary is typically defined by theQuaternary glaciation, the cyclic growth and decay of continentalice sheets related to theMilankovitch cycles and the associated climate and environmental changes that they caused.[5][6]

Research history

[edit]
See also:Quaternary science

In 1759Giovanni Arduino proposed that the geological strata of northernItaly could be divided into four successive formations or "orders" (Italian:quattro ordini).[7] The term "quaternary" was introduced byJules Desnoyers in 1829 for sediments ofFrance'sSeine Basin that clearly seemed to be younger thanTertiaryPeriodrocks.[8][9][10]

The Quaternary Period follows theNeogene Period and extends to the present. The Quaternary covers the time span ofglaciations classified as thePleistocene, and includes the present interglacial time-period, theHolocene.

This places the start of the Quaternary at the onset ofNorthern Hemisphere glaciation approximately 2.6 million years ago (mya). Prior to 2009, the Pleistocene was defined to be from 1.805 million years ago to the present, so the current definition of the Pleistocene includes a portion of what was, prior to 2009, defined as thePliocene.

Quaternary stratigraphers usually worked with regional subdivisions. From the 1970s, theInternational Commission on Stratigraphy (ICS) tried to make a single geologic time scale based onGSSP's, which could be used internationally. The Quaternary subdivisions were defined based onbiostratigraphy instead ofpaleoclimate.

This led to the problem that the proposed base of the Pleistocene was at 1.805 million years ago, long after the start of the major glaciations of the northern hemisphere. The ICS then proposed to abolish use of the name Quaternary altogether, which appeared unacceptable to theInternational Union for Quaternary Research (INQUA).

In 2009, it was decided to make the Quaternary the youngest period of theCenozoic Era with its base at 2.588 mya and including theGelasian Stage, which was formerly considered part of the Neogene Period and Pliocene Epoch.[11] This was later revised to 2.58 mya.[4][12]

TheAnthropocene was proposed as a third epoch as a mark of the anthropogenic impact on the global environment starting with theIndustrial Revolution, or about 200 years ago.[13] The Anthropocene was rejected as a geological epoch in 2024 by theInternational Union of Geological Sciences (IUGS), the governing body of the ICS.[14]

Geology

[edit]
Further information:Quaternary geology

The 2.58 million years of the Quaternary represents the time during which recognisable humans existed.[15] Over this geologically short time period there has been relatively little change in the distribution of the continents due toplate tectonics.

The Quaternary geological record is preserved in greater detail than that for earlier periods.

The major geographical changes during this time period included the emergence of the straits ofBosphorus andSkagerrak during glacial epochs, which respectively turned theBlack Sea andBaltic Sea into fresh water lakes, followed by their flooding (and return to salt water) by rising sea level;[16] the periodic filling of theEnglish Channel, forming a land bridge between Britain and the European mainland; the periodic closing of theBering Strait, formingthe land bridge between Asia and North America; and the periodic flash flooding ofScablands of the American Northwest by glacial water.[17]

The current extent ofHudson Bay, theGreat Lakes and other major lakes of North America are a consequence of theCanadian Shield's readjustment since the last ice age; different shorelines have existed over the course of Quaternary time.[18]

Climate

[edit]
Further information:Quaternary glaciation andLast Glacial Period

Theclimate was one of periodic glaciations with continental glaciers moving as far from the poles as 40 degreeslatitude. Glaciation took place repeatedly during the QuaternaryIce age – a term coined by Schimper in 1839 that began with the start of the Quaternary about 2.58 Mya and continues to the present day.

Artist's impression of Earth during theLast Glacial Maximum

In 1821, aSwiss engineer,Ignaz Venetz, presented an article in which he suggested the presence of traces of the passage of a glacier at a considerable distance from the Alps. This idea was initially disputed by another Swiss scientist,Louis Agassiz, but when he undertook to disprove it, he ended up affirming his colleague's hypothesis. A year later, Agassiz raised the hypothesis of a great glacial period that would have had long-reaching general effects. This idea gained him international fame and led to the establishment of the Glacial Theory.

In time, thanks to the refinement of geology, it has been demonstrated that there were several periods of glacial advance and retreat and that past temperatures on Earth were very different from today.In particular, theMilankovitch cycles ofMilutin Milankovitch are based on the premise that variations in incomingsolar radiation are a fundamental factor controlling Earth's climate.

During this time, substantial glaciers advanced and retreated over much of North America and Europe, parts of South America and Asia, and all of Antarctica.

Flora and fauna

[edit]
[icon]
This sectionneeds expansion. You can help byadding to it.(March 2023)
Further information:Late Pleistocene extinctions

There was a majorextinction of large mammals globally during theLate Pleistocene Epoch.[19] Many forms such assabre-toothed cats,mammoths,mastodons,glyptodonts, etc., became extinct worldwide. Others, includinghorses,camels andAmerican cheetahs became extinct inNorth America.[20][21]

TheGreat Lakes formed and giant mammals thrived in parts of North America and Eurasia not covered in ice. These mammals became extinct when the glacial period ended about 11,700 years ago. Modernhumans evolved about 315,000 years ago. During the Quaternary Period, mammals, flowering plants, and insects dominated the land.[citation needed]

See also

[edit]

References

[edit]
  1. ^"International Chronostratigraphic Chart"(PDF).International Commission on Stratigraphy. September 2023. Retrieved16 December 2024.
  2. ^Gibbard, Philip; Head, Martin (September 2010)."The newly-ratified definition of the Quaternary System/Period and redefinition of the Pleistocene Series/Epoch, and comparison of proposals advanced prior to formal ratification"(PDF).Episodes.33 (3):152–158.doi:10.18814/epiiugs/2010/v33i3/002. Retrieved8 December 2020.
  3. ^Cohen, K. M.; Finney, S. C.; Gibbard, P. L.; Fan, J.-X."International Chronostratigraphic Chart 2013"(PDF).stratigraphy.org. ICS. Retrieved15 June 2014.
  4. ^ab"Stratigraphic Chart 2022"(PDF). International Stratigraphic Commission. February 2022. Retrieved4 June 2022.
  5. ^Denton, G. H.; Anderson, R. F.; Toggweiler, J. R.; Edwards, R. L.; Schaefer, J. M.; Putnam, A. E. (2010). "The Last Glacial Termination".Science.328 (5986):1652–1656.Bibcode:2010Sci...328.1652D.CiteSeerX 10.1.1.1018.5454.doi:10.1126/science.1184119.PMID 20576882.S2CID 27485445.
  6. ^Lowe, J. J.; Walker, M. J. C. (1997).Reconstructing Quaternary Environments. Routledge.ISBN 978-0582101661.
  7. ^See:
    • Arduino, Giovanni (1760). "Lettera Segonda di Giovanni Arduino … sopra varie sue osservazioni fatte in diverse parti del territorio di Vicenza, ed altrove, apparenenti alla Teoria terrestre, ed alla Mineralogia" [Second letter of Giovani Arduino … on his various observations made in different parts of the territory of Vincenza, and elsewhere, concerning the theory of the earth and mineralogy].Nuova Raccolta d'Opuscoli Scientifici e Filologici [New collection of scientific and philogical pamphlets] (in Italian).6: 133 (cxxxiii)–180(clxxx). Available at:Museo Galileo (Florence (Firenze), Italy) From p. 158 (clviii):"Per quanto ho potuto sinora osservavare, la serie di questi strati, che compongono la corteccia visibile della terra, mi pare distinta in quattro ordini generali, e successivi, senza considerarvi il mare." (As far as I have been able to observe, the series of these layers that compose the visible crust of the earth seems to me distinct in four general orders, and successive, not considering the sea.)
    • English translation:Ell, Theodore (2012). "Two letters of Signor Giovanni Arduino, concerning his natural observations: first full English translation. Part 2".Earth Sciences History.31 (2):168–192.Bibcode:2012ESHis..31..168E.doi:10.17704/eshi.31.2.c2q4076006wn7751.
  8. ^Desnoyers, J. (1829)."Observations sur un ensemble de dépôts marins plus récents que les terrains tertiaires du bassin de la Seine, et constituant une formation géologique distincte; précédées d'un aperçu de la nonsimultanéité des bassins tertiares" [Observations on a set of marine deposits [that are] more recent than the tertiary terrains of the Seine basin and [that] constitute a distinct geological formation; preceded by an outline of the non-simultaneity of tertiary basins].Annales des Sciences Naturelles (in French).16:171–214,402–491.From p. 193:"Ce que je désirerais … dont il faut également les distinguer." (What I would desire to prove above all is that the series of tertiary deposits continued – and even began in the more recent basins – for a long time, perhaps after that of the Seine had been completely filled, and that these later formations –Quaternary (1), so to say – should not retain the name of alluvial deposits any more than the true and ancient tertiary deposits, from which they must also be distinguished.) However, on the very same page, Desnoyers abandoned the use of the term "quaternary" because the distinction between quaternary and tertiary deposits wasn't clear. From p. 193:"La crainte de voir mal comprise … que ceux du bassin de la Seine." (The fear of seeing my opinion in this regard be misunderstood or exaggerated, has made me abandon the word "quaternary", which at first I had wanted to apply to all deposits more recent than those of the Seine basin.)
  9. ^"Late Quaternary Fluvial and Coastal Sequences Chapter 1: Introduction"(PDF). Retrieved26 March 2017.
  10. ^Wiz Science™ (28 September 2015),Quaternary - Video Learning, archived fromthe original on 7 April 2017, retrieved26 March 2017
  11. ^"See the 2009 version of the ICS geologic time scale".
  12. ^"International Chronostratigraphic Chart ChangeLog for 2012-2022".International Chronostratigraphic Chart.International Commission on Stratigraphy. February 2022. Retrieved4 June 2022.
  13. ^Zalasiewicz, J.; Williams, M.; Haywood, A.; Ellis, M. (2011)."The Anthropocene: a new epoch of geological time?"(PDF).Philosophical Transactions of the Royal Society A.369 (1938):835–841.Bibcode:2011RSPTA.369..835Z.doi:10.1098/rsta.2010.0339.PMID 21282149.S2CID 2624037.
  14. ^The Anthropocene: IUGS-ICS Statement. March 20, 2024/https://www.iugs.org/_files/ugd/f1fc07_ebe2e2b94c35491c8efe570cd2c5a1bf.pdf
  15. ^Ghosh, Pallab (4 March 2015)."'First human' discovered in Ethiopia".BBC News. London. Retrieved19 April 2015.
  16. ^Ryan, William B.F.; Pitman, Walter C.; Major, Candace O.; Shimkus, Kazimieras; Moskalenko, Vladamir; Jones, Glenn A.; Dimitrov, Petko; Gorür, Naci; Sakinç, Mehmet; Yüce, Hüseyin (April 1997)."An abrupt drowning of the Black Sea shelf".Marine Geology.138 (1–2):119–126.Bibcode:1997MGeol.138..119R.doi:10.1016/s0025-3227(97)00007-8.S2CID 129316719.
  17. ^Balbas, A.M., Barth, A.M., Clark, P.U., Clark, J., Caffee, M., O'Connor, J., Baker, V.R., Konrad, K. and Bjornstad, B., 2017.10Be dating of late Pleistocene megafloods and Cordilleran Ice Sheet retreat in the northwestern United States.Geology, 45(7), pp. 583-586.
  18. ^Dyke, Arthur S. (2004). "An outline of North American deglaciation with emphasis on central and northern Canada".Developments in Quaternary Sciences.2:373–424.doi:10.1016/S1571-0866(04)80209-4.ISBN 9780444515926.
  19. ^Barnosky, Anthony D.; Koch, Paul L.; Feranec, Robert S.; Wing, Scott L.; Shabel, Alan B. (October 2004)."Assessing the Causes of Late Pleistocene Extinctions on the Continents".Science.306 (5693):70–75.Bibcode:2004Sci...306...70B.doi:10.1126/science.1101476.ISSN 0036-8075.PMID 15459379.
  20. ^Haynes."Stanford Camelops"(PDF). Archived fromthe original(PDF) on 9 March 2014.
  21. ^"Extinct American Cheetah Fact Sheet".library.sandiegozoo.org. Archived fromthe original on 4 March 2016. Retrieved10 December 2015.

External links

[edit]
Wikisource has original works on the topic:Cenozoic#Quaternary
Cenozoic Era
(present–66.0 Ma)
Quaternary(present–2.58 Ma)
Neogene(2.58–23.0 Ma)
Paleogene(23.0–66.0 Ma)
Mesozoic Era
(66.0–252 Ma)
Cretaceous(66.0–145 Ma)
Jurassic(145–201 Ma)
Triassic(201–252 Ma)
Paleozoic Era
(252–539 Ma)
Permian(252–299 Ma)
Carboniferous(299–359 Ma)
Devonian(359–419 Ma)
Silurian(419–444 Ma)
Ordovician(444–485 Ma)
Cambrian(485–539 Ma)
Proterozoic Eon
(539 Ma–2.5 Ga)
Neoproterozoic(539 Ma–1 Ga)
Mesoproterozoic(1–1.6 Ga)
Paleoproterozoic(1.6–2.5 Ga)
Archean Eon(2.5–4 Ga)
Hadean Eon(4–4.6 Ga)
 
ka = kiloannum (thousand years ago);Ma = megaannum (million years ago);Ga = gigaannum (billion years ago).
See also:Geologic time scale  • iconGeology portal  • World portal
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quaternary&oldid=1271301429"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp