Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quantum thermodynamics

From Wikipedia, the free encyclopedia
Study of the relations between thermodynamics and quantum mechanics
Thermodynamics
The classicalCarnot heat engine
Part of a series of articles about
Quantum mechanics
iddt|Ψ=H^|Ψ{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }

Quantum thermodynamics[1][2] is the study of the relations between two independent physical theories:thermodynamics andquantum mechanics. The two independent theories address the physical phenomena of light and matter.In 1905,Albert Einstein argued that the requirement of consistency betweenthermodynamics andelectromagnetism[3] leads to the conclusion that light is quantized, obtaining the relationE=hν{\displaystyle E=h\nu }. This paper is the dawn ofquantum theory. In a few decadesquantum theory became established with an independent set of rules.[4] Currently quantum thermodynamics addresses the emergence of thermodynamic laws from quantum mechanics. It differs fromquantum statistical mechanics in the emphasis on dynamical processes out of equilibrium. In addition, there is a quest for the theory to be relevant for a single individual quantum system.

Dynamical view

[edit]

There is an intimate connection of quantum thermodynamics with the theory ofopen quantum systems.[5] Quantum mechanics inserts dynamics into thermodynamics, giving a sound foundation to finite-time-thermodynamics. The main assumption is that the entire world is a large closed system, and therefore, time evolution is governed by a unitary transformation generated by a globalHamiltonian. For the combined systembath scenario, the global Hamiltonian can be decomposed into:H=HS+HB+HSB{\displaystyle H=H_{\text{S}}+H_{\text{B}}+H_{\text{SB}}}whereHS{\displaystyle H_{\text{S}}} is the system Hamiltonian,HB{\displaystyle H_{\text{B}}} is the bath Hamiltonian andHSB{\displaystyle H_{\text{SB}}} is the system-bath interaction.

The state of the system is obtained from a partial trace over the combined system and bath:

ρS(t)=TrB(ρSB(t)).{\displaystyle \rho _{\text{S}}(t)=\operatorname {Tr} _{\text{B}}(\rho _{\text{SB}}(t)).}

Reduced dynamics is an equivalent description of thesystem dynamics utilizing only system operators.AssumingMarkov property for the dynamics the basic equation of motion for an open quantum system is theLindblad equation (GKLS):[6][7]ρ˙S=i[HS,ρS]+LD(ρS){\displaystyle {\dot {\rho }}_{\text{S}}=-{i \over \hbar }[H_{\text{S}},\rho _{\text{S}}]+L_{\text{D}}(\rho _{\text{S}})}HS{\displaystyle H_{\text{S}}} is a (Hermitian)Hamiltonian part andLD{\displaystyle L_{\text{D}}}:LD(ρS)=n[VnρSVn12(ρSVnVn+VnVnρS)]{\displaystyle L_{\text{D}}(\rho _{\text{S}})=\sum _{n}\left[V_{n}\rho _{\text{S}}V_{n}^{\dagger }-{\tfrac {1}{2}}\left(\rho _{\text{S}}V_{n}^{\dagger }V_{n}+V_{n}^{\dagger }V_{n}\rho _{\text{S}}\right)\right]}is the dissipative part describing implicitly through system operatorsVn{\displaystyle V_{n}} the influence of the bath on the system.TheMarkov property imposes that the system and bath are uncorrelated at all timesρSB=ρsρB{\displaystyle \rho _{\text{SB}}=\rho _{s}\otimes \rho _{\text{B}}}. The L-GKS equation is unidirectional and leads any initial stateρS{\displaystyle \rho _{\text{S}}} to a steady state solution which is an invariant of the equation of motionρ˙S(t)=0{\displaystyle {\dot {\rho }}_{\text{S}}(t\to \infty )=0}.[5]

TheHeisenberg picture supplies a direct link to quantum thermodynamic observables. The dynamics of a system observable represented by the operator,O{\displaystyle O}, has the form:dOdt=i[HS,O]+LD(O)+Ot{\displaystyle {\frac {dO}{dt}}={\frac {i}{\hbar }}[H_{\text{S}},O]+L_{\text{D}}^{*}(O)+{\frac {\partial O}{\partial t}}}where the possibility that the operator,O{\displaystyle O} is explicitly time-dependent, is included.

Emergence of time derivative of first law of thermodynamics

[edit]

WhenO=HS{\displaystyle O=H_{\text{S}}} thefirst law of thermodynamics emerges:dEdt=HSt+LD(HS){\displaystyle {\frac {dE}{dt}}=\left\langle {\frac {\partial H_{\text{S}}}{\partial t}}\right\rangle +\langle L_{\text{D}}^{*}(H_{\text{S}})\rangle }where power is interpreted as

P=HSt{\displaystyle P=\left\langle {\frac {\partial H_{\text{S}}}{\partial t}}\right\rangle }

and the heat current[8][9][10]

J=LD(HS).{\displaystyle J=\left\langle L_{\text{D}}^{*}(H_{\text{S}})\right\rangle .}

Additional conditions have to be imposed on the dissipatorLD{\displaystyle L_{\text{D}}} to be consistent with thermodynamics.

First the invariantρS(){\displaystyle \rho _{\text{S}}(\infty )} should become an equilibriumGibbs state. This implies that the dissipatorLD{\displaystyle L_{\text{D}}} should commute with the unitary part generated byHS{\displaystyle H_{\text{S}}}.[5] In addition an equilibrium state is stationary and stable. This assumption is used to derive the Kubo-Martin-Schwinger stability criterion for thermal equilibrium i.e.KMS state.

A unique and consistent approach is obtained by deriving the generator,LD{\displaystyle L_{\text{D}}}, in the weak system bathcoupling limit.[11] In this limit, the interaction energy can be neglected. This approach represents a thermodynamic idealization: it allows energy transfer, while keeping a tensor product separationbetween the system and bath, i.e., a quantum version of anisothermal partition.

Markovian behavior involves a rather complicated cooperation between system and bath dynamics. This means that inphenomenological treatments, one cannot combine arbitrary system Hamiltonians,HS{\displaystyle H_{\text{S}}}, with a given L-GKS generator. This observation is particularly important in the context of quantum thermodynamics, where it is tempting to study Markovian dynamics with an arbitrary control Hamiltonian. Erroneous derivations of the quantum master equation can easily lead to a violation of the laws of thermodynamics.

An external perturbation modifying the Hamiltonian of the system will also modify the heat flow. As a result, the L-GKS generator has to be renormalized. For a slow change, one can adopt the adiabatic approach and use the instantaneous system's Hamiltonian to deriveLD{\displaystyle L_{\text{D}}}. An important class of problems in quantum thermodynamics is periodically driven systems. Periodicquantum heat engines and power-drivenrefrigerators fall into this class.

A reexamination of the time-dependent heat current expression using quantum transport techniques has been proposed.[12]

A derivation of consistent dynamics beyond the weak coupling limit has been suggested.[13]

Phenomenological formulations of irreversible quantum dynamics consistent with the second law and implementing the geometric idea of "steepest entropy ascent" or "gradient flow" have been suggested to model relaxation and strong coupling.[14][15]

Emergence of the second law

[edit]

Thesecond law of thermodynamics is a statement on the irreversibility of dynamics or, the breakup of time reversal symmetry (T-symmetry). This should be consistent with the empirical direct definition: heat will flow spontaneously from a hot source to a cold sink.

From a static viewpoint, for a closed quantum system, the 2nd law of thermodynamics is a consequence of the unitary evolution.[16] In this approach, one accounts for the entropy change before and after a change in the entire system. A dynamical viewpoint is based on local accounting for theentropy changes in the subsystems and the entropy generated in the baths.

Entropy

[edit]

In thermodynamics,entropy is related to the amount of energy of a system that can be converted into mechanical work in a concrete process.[17] In quantum mechanics, this translates to the ability to measure and manipulate the system based on the information gathered by measurement. An example is the case ofMaxwell's demon, which has been resolved byLeó Szilárd.[18][19][20]

Theentropy of an observable is associated with the complete projective measurement of an observable,A{\displaystyle \langle A\rangle }, where the operatorA{\displaystyle A} has a spectral decomposition:A=jαjPj,{\displaystyle A=\sum _{j}\alpha _{j}P_{j},} wherePj{\displaystyle P_{j}} are the projection operators of theeigenvalueαj.{\displaystyle \alpha _{j}.}The probability of outcomej{\displaystyle j} ispj=Tr(ρPj).{\displaystyle p_{j}=\operatorname {Tr} (\rho P_{j}).} The entropy associated with the observableA{\displaystyle \langle A\rangle } is theShannon entropy with respect to the possible outcomes:SA=jpjlnpj{\displaystyle S_{A}=-\sum _{j}p_{j}\ln p_{j}}

The most significant observable in thermodynamics is the energy represented by theHamiltonian operatorH,{\displaystyle H,} and its associated energy entropy,SE.{\displaystyle S_{E}.}[21]

John von Neumann suggested to single out the most informative observable to characterize the entropy of the system. This invariant is obtained by minimizing the entropy with respect to all possible observables. The most informative observable operator commutes with the state of the system. Theentropy of this observable is termed theVon Neumann entropy and is equal toSvn=Tr(ρlnρ).{\displaystyle S_{\text{vn}}=-\operatorname {Tr} (\rho \ln \rho ).}As a consequence,SASvn{\displaystyle S_{A}\geq S_{\text{vn}}} for all observables. At thermal equilibrium the energyentropy is equal to thevon Neumann entropy:SE=Svn.{\displaystyle S_{E}=S_{\text{vn}}.}

Svn{\displaystyle S_{\text{vn}}} is invariant to a unitary transformation changing the state. TheVon Neumann entropySvn{\displaystyle S_{\text{vn}}} is additive only for a system state that is composed of a tensor product of its subsystems:ρ=Πjρj{\displaystyle \rho =\Pi _{j}\otimes \rho _{j}}

Clausius version of the II-law

[edit]

No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature.

This statement for N-coupled heat baths in steady state becomesnJnTn0{\displaystyle \sum _{n}{\frac {J_{n}}{T_{n}}}\geq 0}

A dynamical version of the II-law can be proven, based onSpohn's inequality:[8]Tr(LDρ[lnρ()lnρ])0,{\displaystyle \operatorname {Tr} \left(L_{\text{D}}\rho \left[\ln \rho (\infty )-\ln \rho \right]\right)\geq 0,}which is valid for any L-GKS generator, with a stationary state,ρ(){\displaystyle \rho (\infty )}.[5]

Consistency with thermodynamics can be employed to verify quantum dynamical models of transport. For example, local models for networks where local L-GKS equations are connected through weak links have been thought to violate thesecond law of thermodynamics.[22] In 2018 has been shown that, by correctly taking into account all work and energy contributions in the full system, local master equations are fully coherent with thesecond law of thermodynamics.[23]

Quantum and thermodynamic adiabatic conditions and quantum friction

[edit]

Thermodynamicadiabatic processes have no entropy change. Typically, an external control modifiesthe state. A quantum version of anadiabatic process can be modeled by an externally controlled time dependentHamiltonianH(t){\displaystyle H(t)}. If the system is isolated, the dynamics are unitary, and therefore,Svn{\displaystyle S_{\text{vn}}} is a constant. A quantum adiabatic process is defined by the energy entropySE{\displaystyle S_{E}} being constant. The quantumadiabatic condition is therefore equivalent to no net change in the population of the instantaneous energy levels. This implies that the Hamiltonian should commute with itself at different times:[H(t),H(t)]=0{\displaystyle [H(t),H(t')]=0}.

When the adiabatic conditions are not fulfilled, additional work is required to reach the final control value. For an isolated system, this work is recoverable, since the dynamics is unitary and can be reversed. In this case, quantum friction can be suppressed usingshortcuts to adiabaticity as demonstrated in the laboratory using a unitary Fermi gas in a time-dependent trap.[24]

Thecoherence stored in the off-diagonal elements of the density operator carry the required information to recover the extra energy cost and reverse the dynamics. Typically, this energy is not recoverable, due to interaction with a bath that causes energy dephasing. The bath, in this case, acts like a measuring apparatus of energy. This lost energy is the quantum version of friction.[25][26]

Emergence of the dynamical version of the third law of thermodynamics

[edit]

There are seemingly two independent formulations of thethird law of thermodynamics. Both were originally stated byWalther Nernst. The first formulation is known as theNernst heat theorem, and can be phrased as:

  • The entropy of any pure substance in thermodynamic equilibrium approaches zero as the temperature approaches zero.

The second formulation is dynamical, known as theunattainability principle[27]

  • It is impossible by any procedure, no matter how idealized, to reduce any assembly toabsolute zero temperature in a finite number of operations.

At steady state thesecond law of thermodynamics implies that the totalentropy production is non-negative.

When the cold bath approaches the absolute zero temperature,it is necessary to eliminate theentropy production divergence at the cold sidewhenTc0{\displaystyle T_{\text{c}}\rightarrow 0}, thereforeS˙cTcα   ,    α0  .{\displaystyle {\dot {S}}_{\text{c}}\propto -T_{\text{c}}^{\alpha }~~~,~~~~\alpha \geq 0~~.}Forα=0{\displaystyle \alpha =0} the fulfillment of thesecond law depends on theentropy production of the other baths, which should compensate for the negativeentropy production of the cold bath.

The first formulation of the third law modifies this restriction. Instead ofα0{\displaystyle \alpha \geq 0} the third law imposesα>0{\displaystyle \alpha >0}, guaranteeing that at absolute zero the entropy production at the cold bath is zero:S˙c=0{\displaystyle {\dot {S}}_{\text{c}}=0}. This requirement leads to the scaling condition of the heat currentJcTcα+1{\displaystyle {J}_{\text{c}}\propto T_{\text{c}}^{\alpha +1}}.

The second formulation, known as the unattainability principle can be rephrased as;[28]

  • No refrigerator can cool a system toabsolute zero temperature at finite time.

The dynamics of the cooling process is governed by the equation:Jc(Tc(t))=cV(Tc(t))dTc(t)dt  .{\displaystyle {J}_{\text{c}}(T_{\text{c}}(t))=-c_{V}(T_{\text{c}}(t)){\frac {dT_{\text{c}}(t)}{dt}}~~.}wherecV(Tc){\displaystyle c_{V}(T_{\text{c}})} is the heat capacity of the bath. TakingJcTcα+1{\displaystyle {J}_{\text{c}}\propto T_{\text{c}}^{\alpha +1}} andcVTcη{\displaystyle c_{V}\sim T_{\text{c}}^{\eta }} withη0{\displaystyle {\eta }\geq 0}, we can quantify this formulation by evaluating the characteristic exponentζ{\displaystyle \zeta } of the cooling process,dTc(t)dtTcζ,     Tc0,ζ=αη+1{\displaystyle {\frac {dT_{\text{c}}(t)}{dt}}\propto -T_{\text{c}}^{\zeta },~~~~~T_{\text{c}}\to 0,\;\;\quad {\zeta =\alpha -\eta +1}}

This equation introduces the relation between the characteristic exponentsζ{\displaystyle \zeta } andα{\displaystyle \alpha }. Whenζ<0{\displaystyle \zeta <0} then the bath is cooled to zero temperature in a finite time, which implies a violation of the third law. It is apparent from the last equation, that the unattainability principle is more restrictive than theNernst heat theorem.

Typicality as a source of emergence of thermodynamic phenomena

[edit]

The basic idea of quantum typicality is that the vast majority of all pure states featuring a common expectation value of some generic observable at a given time will yield very similar expectation values of the same observable at any later time. This is meant to apply to Schrödinger type dynamics in high dimensional Hilbert spaces. As a consequence individual dynamics of expectation values are then typically well described by the ensemble average.[29]

Quantum ergodic theorem originated byJohn von Neumann is a strong result arising from the mere mathematical structure of quantum mechanics. The QET is a precise formulation of termed normal typicality, i.e. the statement that, for typical large systems, every initial wave functionψ0{\displaystyle \psi _{0}} from an energy shell is 'normal': it evolves in such a way thatψt{\displaystyle \psi _{t}} for most t, is macroscopically equivalent to the micro-canonical density matrix.[30]

Resource theory

[edit]

Thesecond law of thermodynamics can be interpreted as quantifying state transformations which are statistically unlikely so that they become effectively forbidden. The second law typically applies to systems composed of many particles interacting; Quantum thermodynamics resource theory is a formulation of thermodynamics in the regime where it can be applied to a small number of particles interacting with a heat bath. For processes which are cyclic or very close to cyclic, the second law for microscopic systems takes on a very different form than it does at the macroscopic scale, imposing not just one constraint on what state transformations are possible, but an entire family of constraints. These second laws are not only relevant for small systems, but also apply to individual macroscopic systems interacting via long-range interactions, which only satisfy the ordinary second law on average. By making precise the definition of thermal operations, the laws of thermodynamics take on a form with the first law defining the class of thermal operations, the zeroth law emerging as a unique condition ensuring the theory is nontrivial, and the remaining laws being a monotonicity property of generalised free energies.[31][32]

Noncommuting conserved charges

[edit]

Thermodynamic systems typically conserve quantities—known as charges—such as energy and particle number. These charges are often implicitly assumed to commute. This assumption underlies, for example, the derivation of thermal state forms, theEigenstate Thermalization Hypothesis, andtransport coefficients. However, key quantum phenomena, including uncertainty relations, arise precisely from the noncommutation of observables. How does this noncommutation affect thermodynamic behaviour?[33]

The noncommutation of conserved charges has been shown to challenge standard assumptions: it can invalidate conventional derivations of the thermal state,[34] increase entanglement,[35] induce critical dynamics,[36] alter entropy production,[37] and conflict with the eigenstate thermalization hypothesis,[38] among other effects.

A central open question remains: evidence suggests that noncommuting charges can both hinder and enhance thermalization, revealing a conceptual tension at the heart of this growing field.[39]

Engineered reservoirs

[edit]

Nanoscale allows for the preparation of quantum systems in physical states without classical analogs. There, complex out-of-equilibrium scenarios may be produced by the initial preparation of either the working substance or the reservoirs of quantum particles, the latter dubbed as "engineered reservoirs".

There are different forms of engineered reservoirs. Some of them involve subtle quantum coherence or correlation effects,[40][41][42] while others rely solely on nonthermal classical probability distribution functions.[43][44][45][46] Interesting phenomena may emerge from the use of engineered reservoirs such as efficiencies greater than the Otto limit,[42] violations of Clausius inequalities,[47] or simultaneous extraction of heat and work from the reservoirs.[41]

See also

[edit]

References

[edit]
  1. ^Deffner, Sebastian; Campbell, Steve (2019).Quantum Thermodynamics: An introduction to the thermodynamics of quantum information. San Rafael, CA: Morgan & Claypool Publishers.Bibcode:2019qtit.book.....D.doi:10.1088/2053-2571/ab21c6.ISBN 978-1-64327-658-8.
  2. ^Adesso, Gerardo; Anders, Janet; Binder, Felix; Correa, Luis A.; Gogolin, Christian, eds. (2018).Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions. Fundamental Theories of Physics (1st ed.). Cham:Springer Publishing.ISBN 978-3-319-99046-0.
  3. ^Einstein, A. (1905)."Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt".Annalen der Physik (in German).322 (6):132–148.Bibcode:1905AnP...322..132E.doi:10.1002/andp.19053220607.ISSN 0003-3804.
  4. ^Neumann, John von; Von Neumann, John (1955).Mathematical Foundations of Quantum Mechanics. Princeton landmarks in mathematics and physics. Princeton Chichester:Princeton University Press.ISBN 978-0-691-02893-4.{{cite book}}:ISBN / Date incompatibility (help)
  5. ^abcdKosloff, Ronnie (2013-05-29)."Quantum Thermodynamics: A Dynamical Viewpoint".Entropy.15 (12):2100–2128.arXiv:1305.2268.Bibcode:2013Entrp..15.2100K.doi:10.3390/e15062100.ISSN 1099-4300.
  6. ^Lindblad, G. (1976)."On the generators of quantum dynamical semigroups".Communications in Mathematical Physics.48 (2):119–130.Bibcode:1976CMaPh..48..119L.doi:10.1007/bf01608499.ISSN 0010-3616.S2CID 55220796.
  7. ^Gorini, Vittorio (1976). "Completely positive dynamical semigroups of N-level systems".Journal of Mathematical Physics.17 (5):821–825.Bibcode:1976JMP....17..821G.doi:10.1063/1.522979.ISSN 0022-2488.
  8. ^abSpohn, Herbert; Lebowitz, Joel L. (1978). Rice, Stuart A. (ed.).Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs(PDF). Vol. 38. Wiley. pp. 109–142.doi:10.1002/9780470142578.ch2.ISBN 978-0-471-03883-2.
  9. ^Alicki, R (1979). "The quantum open system as a model of the heat engine".Journal of Physics A: Mathematical and General.12 (5):L103 –L107.Bibcode:1979JPhA...12L.103A.doi:10.1088/0305-4470/12/5/007.ISSN 0305-4470.
  10. ^Kosloff, Ronnie (1984-02-15). "A quantum mechanical open system as a model of a heat engine".The Journal of Chemical Physics.80 (4):1625–1631.Bibcode:1984JChPh..80.1625K.doi:10.1063/1.446862.ISSN 0021-9606.
  11. ^Davies, E. B. (1974)."Markovian master equations".Communications in Mathematical Physics.39 (2):91–110.Bibcode:1974CMaPh..39...91D.doi:10.1007/bf01608389.ISSN 0010-3616.S2CID 122552267.
  12. ^Ludovico, María Florencia; Lim, Jong Soo; Moskalets, Michael; Arrachea, Liliana; Sánchez, David (2014-04-21). "Dynamical energy transfer in ac-driven quantum systems".Physical Review B.89 (16): 161306(R).arXiv:1311.4945.Bibcode:2014PhRvB..89p1306L.doi:10.1103/physrevb.89.161306.ISSN 1098-0121.S2CID 119265583.
  13. ^Esposito, Massimiliano; Ochoa, Maicol A.; Galperin, Michael (2015-02-25). "Quantum Thermodynamics: A Nonequilibrium Green's Function Approach".Physical Review Letters.114 (8) 080602.arXiv:1411.1800.Bibcode:2015PhRvL.114h0602E.doi:10.1103/physrevlett.114.080602.ISSN 0031-9007.PMID 25768745.S2CID 11498686.
  14. ^Tabakin, Frank (2017-06-03). "Model dynamics for quantum computing".Annals of Physics.383: 33.arXiv:1611.00664.Bibcode:2017AnPhy.383...33T.doi:10.1016/j.aop.2017.04.013.S2CID 119718818.
  15. ^Beretta, Gian Paolo (2020-05-01). "The fourth law of thermodynamics: steepest entropy ascent".Philosophical Transactions of the Royal Society A.378 (2170) 20190168.arXiv:1908.05768.Bibcode:2020RSPTA.37890168B.doi:10.1098/rsta.2019.0168.ISSN 1471-2962.PMID 32223406.S2CID 201058607.
  16. ^Lieb, Elliott H.; Yngvason, Jakob (1999). "The physics and mathematics of the second law of thermodynamics".Physics Reports.310 (1):1–96.arXiv:cond-mat/9708200.Bibcode:1999PhR...310....1L.doi:10.1016/s0370-1573(98)00082-9.ISSN 0370-1573.S2CID 119620408.
  17. ^Gyftopoulos, E. P.; Beretta, G. P. (2005) [1st ed., Macmillan, 1991].Thermodynamics: Foundations and Applications. Mineola (New York): Dover Publications.
  18. ^Szilard, L. (1929). "Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen" [On the minimization of entropy in a thermodynamic system with interferences of intelligent beings].Zeitschrift für Physik (in German).53 (11–12):840–856.Bibcode:1929ZPhy...53..840S.doi:10.1007/bf01341281.ISSN 1434-6001.S2CID 122038206.
  19. ^Brillouin, Léon (1956).Science and information theory. New York:Academic Press. p. 107.
  20. ^Maruyama, Koji; Nori, Franco; Vedral, Vlatko (2009-01-06). "Colloquium: The physics of Maxwell's demon and information".Reviews of Modern Physics.81 (1):1–23.arXiv:0707.3400.Bibcode:2009RvMP...81....1M.doi:10.1103/revmodphys.81.1.ISSN 0034-6861.S2CID 18436180.
  21. ^Polkovnikov, Anatoli (2011). "Microscopic diagonal entropy and its connection to basic thermodynamic relations".Annals of Physics.326 (2):486–499.arXiv:0806.2862.Bibcode:2011AnPhy.326..486P.doi:10.1016/j.aop.2010.08.004.ISSN 0003-4916.S2CID 118412733.
  22. ^Levy, Amikam; Kosloff, Ronnie (2014-07-01). "The local approach to quantum transport may violate the second law of thermodynamics".Europhysics Letters.107 (2) 20004.arXiv:1402.3825.Bibcode:2014EL....10720004L.doi:10.1209/0295-5075/107/20004.ISSN 0295-5075.S2CID 118498868.
  23. ^De Chiara, Gabriele; Landi, Gabriel; Hewgill, Adam; Reid, Brendan; Ferraro, Alessandro; Roncaglia, Augusto J; Antezza, Mauro (2018-11-16)."Reconciliation of quantum local master equations with thermodynamics".New Journal of Physics.20 (11): 113024.arXiv:1808.10450.Bibcode:2018NJPh...20k3024D.doi:10.1088/1367-2630/aaecee.ISSN 1367-2630.
  24. ^Deng, S.; Chenu, A.; Diao, P.; Li, F.; Yu, S.; Coulamy, I.; del Campo, A; Wu, H. (2018)."Superadiabatic quantum friction suppression in finite-time thermodynamics".Science Advances.4 (4) eaar5909.arXiv:1711.00650.Bibcode:2018SciA....4.5909D.doi:10.1126/sciadv.aar5909.PMC 5922798.PMID 29719865.
  25. ^Kosloff, Ronnie; Feldmann, Tova (2002-05-16). "Discrete four-stroke quantum heat engine exploring the origin of friction".Physical Review E.65 (5): 055102(R).arXiv:physics/0111098.Bibcode:2002PhRvE..65e5102K.doi:10.1103/physreve.65.055102.ISSN 1063-651X.PMID 12059626.S2CID 9292108.
  26. ^Plastina, F.; Alecce, A.; Apollaro, T. J. G.; Falcone, G.; Francica, G.; et al. (2014-12-31). "Irreversible Work and Inner Friction in Quantum Thermodynamic Processes".Physical Review Letters.113 (26) 260601.arXiv:1407.3441.Bibcode:2014PhRvL.113z0601P.doi:10.1103/physrevlett.113.260601.ISSN 0031-9007.PMID 25615295.S2CID 9353450.
  27. ^Landsberg, P. T. (1956-10-01). "Foundations of Thermodynamics".Reviews of Modern Physics.28 (4):363–392.Bibcode:1956RvMP...28..363L.doi:10.1103/revmodphys.28.363.ISSN 0034-6861.
  28. ^Levy, Amikam; Alicki, Robert; Kosloff, Ronnie (2012-06-26). "Quantum refrigerators and the third law of thermodynamics".Physical Review E.85 (6) 061126.arXiv:1205.1347.Bibcode:2012PhRvE..85f1126L.doi:10.1103/physreve.85.061126.ISSN 1539-3755.PMID 23005070.S2CID 24251763.
  29. ^Bartsch, Christian; Gemmer, Jochen (2009-03-19). "Dynamical Typicality of Quantum Expectation Values".Physical Review Letters.102 (11) 110403.arXiv:0902.0927.Bibcode:2009PhRvL.102k0403B.doi:10.1103/physrevlett.102.110403.ISSN 0031-9007.PMID 19392176.S2CID 34603425.
  30. ^Goldstein, Sheldon; Lebowitz, Joel L.; Mastrodonato, Christian; Tumulka, Roderich; Zanghì, Nino (2010-05-20). "Normal typicality and von Neumann's quantum ergodic theorem".Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.466 (2123):3203–3224.arXiv:0907.0108.Bibcode:2010RSPSA.466.3203G.doi:10.1098/rspa.2009.0635.ISSN 1364-5021.S2CID 816619.
  31. ^Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie (2015-02-09)."The second laws of quantum thermodynamics".Proceedings of the National Academy of Sciences.112 (11):3275–3279.arXiv:1305.5278.Bibcode:2015PNAS..112.3275B.doi:10.1073/pnas.1411728112.ISSN 0027-8424.PMC 4372001.PMID 25675476.
  32. ^Goold, John; Huber, Marcus; Riera, Arnau; Rio, Lídia del; Skrzypczyk, Paul (2016-02-23)."The role of quantum information in thermodynamics—a topical review".Journal of Physics A: Mathematical and Theoretical.49 (14) 143001.arXiv:1505.07835.Bibcode:2016JPhA...49n3001G.doi:10.1088/1751-8113/49/14/143001.ISSN 1751-8113.
  33. ^Majidy, Shayan; Braasch, William F.; Lasek, Aleksander; Upadhyaya, Twesh; Kalev, Amir; Yunger Halpern, Nicole (2023)."Noncommuting conserved charges in quantum thermodynamics and beyond".Nature Reviews Physics.5 (11):689–698.arXiv:2306.00054.Bibcode:2023NatRP...5..689M.doi:10.1038/s42254-023-00641-9.ISSN 2522-5820.
  34. ^Yunger Halpern, Nicole; Faist, Philippe; Oppenheim, Jonathan; Winter, Andreas (2016-07-07)."Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges".Nature Communications.7 (1) 12051.arXiv:1512.01189.Bibcode:2016NatCo...712051Y.doi:10.1038/ncomms12051.ISSN 2041-1723.PMID 27384494.
  35. ^Majidy, Shayan; Lasek, Aleksander; Huse, David A.; Yunger Halpern, Nicole (2023-01-03)."Non-Abelian symmetry can increase entanglement entropy".Physical Review B.107 (4) 045102.arXiv:2209.14303.Bibcode:2023PhRvB.107d5102M.doi:10.1103/PhysRevB.107.045102.
  36. ^Majidy, Shayan; Agrawal, Utkarsh; Gopalakrishnan, Sarang; Potter, Andrew C.; Vasseur, Romain; Halpern, Nicole Yunger (2023-08-17)."Critical phase and spin sharpening in SU(2)-symmetric monitored quantum circuits".Physical Review B.108 (5) 054307.arXiv:2305.13356.Bibcode:2023PhRvB.108e4307M.doi:10.1103/PhysRevB.108.054307.
  37. ^Manzano, Gonzalo; Parrondo, Juan M.R.; Landi, Gabriel T. (2022-01-06)."Non-Abelian Quantum Transport and Thermosqueezing Effects".PRX Quantum.3 (1) 010304.arXiv:2011.04560.Bibcode:2022PRXQ....3a0304M.doi:10.1103/PRXQuantum.3.010304.
  38. ^Murthy, Chaitanya; Babakhani, Arman; Iniguez, Fernando; Srednicki, Mark; Yunger Halpern, Nicole (2023-04-06)."Non-Abelian Eigenstate Thermalization Hypothesis".Physical Review Letters.130 (14) 140402.arXiv:2206.05310.Bibcode:2023PhRvL.130n0402M.doi:10.1103/PhysRevLett.130.140402.PMID 37084457.
  39. ^Majidy, Shayan (2024-09-20)."Noncommuting charges can remove non-stationary quantum many-body dynamics".Nature Communications.15 (1) 8246.arXiv:2403.13046.Bibcode:2024NatCo..15.8246M.doi:10.1038/s41467-024-52588-9.ISSN 2041-1723.PMC 11415508.PMID 39304665.
  40. ^Scully, Marlan O.; Zubairy, M. Suhail; Agarwal, Girish S.; Walther, Herbert (2003-02-07)."Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence".Science.299 (5608):862–864.Bibcode:2003Sci...299..862S.doi:10.1126/science.1078955.ISSN 0036-8075.PMID 12511655.
  41. ^abManzano, Gonzalo; Galve, Fernando; Zambrini, Roberta; Parrondo, Juan M. R. (2016-05-10)."Entropy production and thermodynamic power of the squeezed thermal reservoir".Physical Review E.93 (5) 052120.arXiv:1512.07881.Bibcode:2016PhRvE..93e2120M.doi:10.1103/PhysRevE.93.052120.hdl:10261/134146.ISSN 2470-0045.PMID 27300843.
  42. ^abde Assis, Rogério J.; de Mendonça, Taysa M.; Villas-Boas, Celso J.; de Souza, Alexandre M.; Sarthour, Roberto S.; Oliveira, Ivan S.; de Almeida, Norton G. (2019-06-19)."Efficiency of a Quantum Otto Heat Engine Operating under a Reservoir at Effective Negative Temperatures".Physical Review Letters.122 (24) 240602.arXiv:1811.02917.Bibcode:2019PhRvL.122x0602D.doi:10.1103/PhysRevLett.122.240602.ISSN 0031-9007.PMID 31322364.
  43. ^Pothier, H.; Guéron, S.; Birge, Norman O.; Esteve, D.; Devoret, M. H. (1997-11-03)."Energy Distribution Function of Quasiparticles in Mesoscopic Wires".Physical Review Letters.79 (18):3490–3493.Bibcode:1997PhRvL..79.3490P.doi:10.1103/PhysRevLett.79.3490.ISSN 0031-9007.
  44. ^Chen, Yung-Fu; Dirks, Travis; Al-Zoubi, Gassem; Birge, Norman O.; Mason, Nadya (2009-01-23)."Nonequilibrium Tunneling Spectroscopy in Carbon Nanotubes".Physical Review Letters.102 (3) 036804.arXiv:0810.1308.Bibcode:2009PhRvL.102c6804C.doi:10.1103/PhysRevLett.102.036804.ISSN 0031-9007.PMID 19257380.
  45. ^Altimiras, C.; le Sueur, H.; Gennser, U.; Cavanna, A.; Mailly, D.; Pierre, F. (2010-11-23)."Tuning Energy Relaxation along Quantum Hall Channels".Physical Review Letters.105 (22) 226804.arXiv:1007.0974.Bibcode:2010PhRvL.105v6804A.doi:10.1103/PhysRevLett.105.226804.ISSN 0031-9007.PMID 21231413.
  46. ^Bronn, Nicholas; Mason, Nadya (2013-10-29)."Spatial dependence of electron interactions in carbon nanotubes".Physical Review B.88 (16) 161409.arXiv:1306.4988.Bibcode:2013PhRvB..88p1409B.doi:10.1103/PhysRevB.88.161409.ISSN 1098-0121.
  47. ^Sánchez, Rafael; Splettstoesser, Janine; Whitney, Robert S. (2019). "Nonequilibrium System as a Demon".Physical Review Letters.123 (21) 216801.arXiv:1811.02453.Bibcode:2019PhRvL.123u6801S.doi:10.1103/PhysRevLett.123.216801.ISSN 0031-9007.PMID 31809128.

Further reading

[edit]

External links

[edit]
Divisions
Approaches
Classical
Modern
Interdisciplinary
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quantum_thermodynamics&oldid=1314790239"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp