Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quantum stochastic calculus

From Wikipedia, the free encyclopedia
Form of calculus

Quantum stochastic calculus is a generalization ofstochastic calculus tononcommuting variables.[1] The tools provided by quantum stochastic calculus are of great use for modeling the random evolution of systems undergoingmeasurement, as in quantum trajectories.[2]: 148  Just as theLindblad master equation provides a quantum generalization to theFokker–Planck equation, quantum stochastic calculus allows for the derivation of quantum stochastic differential equations (QSDE) that are analogous to classicalLangevin equations.

For the remainder of this articlestochastic calculus will be referred to asclassical stochastic calculus, in order to clearly distinguish it from quantum stochastic calculus.

Heat baths

[edit]

An important physical scenario in which a quantum stochastic calculus is needed is the case of a system interacting with aheat bath. It is appropriate in many circumstances to model the heat bath as an assembly ofharmonic oscillators. One type of interaction between the system and the bath can be modeled (after making a canonical transformation) by the followingHamiltonian:[3]: 42, 45 

H=Hsys(Z)+12n((pnκnX)2+ωn2qn2),{\displaystyle H=H_{\mathrm {sys} }(\mathbf {Z} )+{\frac {1}{2}}\sum _{n}\left((p_{n}-\kappa _{n}X)^{2}+\omega _{n}^{2}q_{n}^{2}\right)\,,}

whereHsys{\displaystyle H_{\mathrm {sys} }} is the system Hamiltonian,Z{\displaystyle \mathbf {Z} } is a vector containing the system variables corresponding to a finite number of degrees of freedom,n{\displaystyle n} is an index for the different bath modes,ωn{\displaystyle \omega _{n}} is the frequency of a particular mode,pn{\displaystyle p_{n}} andqn{\displaystyle q_{n}} are bath operators for a particular mode,X{\displaystyle X} is a system operator, andκn{\displaystyle \kappa _{n}} quantifies the coupling between the system and a particular bath mode.

In this scenario the equation of motion for an arbitrary system operatorY{\displaystyle Y} is called thequantum Langevin equation and may be written as:[3]: 46–47 

Y˙(t)=i[Hsys,Y(t)]i2[X,{Y(t),ξ(t)t0tf(tt0)X˙(t)dtf(tt0)X(t0)}],{\displaystyle {\dot {Y}}(t)={\frac {i}{\hbar }}[H_{\mathrm {sys} },Y(t)]-{\frac {i}{2\hbar }}\left[X,\left\{Y(t),\xi (t)-\int _{t_{0}}^{t}f(t-t_{0}){\dot {X}}(t^{\prime })\mathrm {d} t^{\prime }-f(t-t_{0})X(t_{0})\right\}\right]\,,}

where[,]{\displaystyle [\cdot ,\cdot ]} and{,}{\displaystyle \{\cdot ,\cdot \}} denote thecommutator andanticommutator (respectively), the memory functionf{\displaystyle f} is defined as:

f(t)nκn2cos(ωnt),{\displaystyle f(t)\equiv \sum _{n}\kappa _{n}^{2}\cos(\omega _{n}t)\,,}

and the time dependent noise operatorξ{\displaystyle \xi } is defined as:

ξ(t)inκnωn2(an(t0)eiωn(tt0)+an(t0)eiωn(tt0)),{\displaystyle \xi (t)\equiv i\sum _{n}\kappa _{n}{\sqrt {\frac {\hbar \omega _{n}}{2}}}\left(-a_{n}(t_{0})e^{-i\omega _{n}(t-t_{0})}+a_{n}^{\dagger }(t_{0})e^{i\omega _{n}(t-t_{0})}\right)\,,}

where the bath annihilation operatoran{\displaystyle a_{n}} is defined as:

anωnqn+ipn2ωn.{\displaystyle a_{n}\equiv {\frac {\omega _{n}q_{n}+ip_{n}}{\sqrt {2\hbar \omega _{n}}}}\,.}

Oftentimes this equation is more general than is needed, and further approximations are made to simplify the equation.

White noise formalism

[edit]

For many purposes it is convenient to make approximations about the nature of the heat bath in order to achieve awhite noise formalism. In such a case the interaction may be modeled by the HamiltonianH=Hsys+HB+Hint{\displaystyle H=H_{\mathrm {sys} }+H_{B}+H_{\mathrm {int} }} where:[4]: 3762 

HB=dωωb(ω)b(ω),{\displaystyle H_{B}=\hbar \int _{-\infty }^{\infty }\mathrm {d} \omega \,\omega b^{\dagger }(\omega )b(\omega )\,,}

and

Hint=idωκ(ω)(b(ω)ccb(ω)),{\displaystyle H_{\mathrm {int} }=i\hbar \int _{-\infty }^{\infty }\mathrm {d} \omega \,\kappa (\omega )\left(b^{\dagger }(\omega )c-c^{\dagger }b(\omega )\right)\,,}

whereb(ω){\displaystyle b(\omega )} areannihilation operators for the bath with the commutation relation[b(ω),b(ω)]=δ(ωω){\displaystyle [b(\omega ),b^{\dagger }(\omega ^{\prime })]=\delta (\omega -\omega ^{\prime })},c{\displaystyle c} is an operator on the system,κ(ω){\displaystyle \kappa (\omega )} quantifies the strength of the coupling of the bath modes to the system, andHsys{\displaystyle H_{\mathrm {sys} }} describes the free system evolution.[3]: 148  This model uses therotating wave approximation and extends the lower limit ofω{\displaystyle \omega } to{\displaystyle -\infty } in order to admit a mathematically simple white noise formalism. The coupling strengths are also usually simplified to a constant in what is sometimes called the first Markov approximation:[4]: 3763 

κ(ω)=γ2π.{\displaystyle \kappa (\omega )={\sqrt {\frac {\gamma }{2\pi }}}\,.}

Systems coupled to a bath of harmonic oscillators can be thought of as being driven by a noise input and radiating a noise output.[3]: 43  The input noise operator at timet{\displaystyle t} is defined by:[3]: 150 [4]: 3763 

bin(t)=12πdωeiω(tt0)b0(ω),{\displaystyle b_{\mathrm {in} }(t)={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }\mathrm {d} \omega \,e^{-i\omega (t-t_{0})}b_{0}(\omega )\,,}

whereb0(ω)=b(ω)|t=t0{\displaystyle b_{0}(\omega )=\left.b(\omega )\right\vert _{t=t_{0}}}, since this operator is expressed in theHeisenberg picture. Satisfaction of the commutation relation[bin(t),bin(t)]=δ(tt){\displaystyle [b_{\mathrm {in} }(t),b_{\mathrm {in} }^{\dagger }(t^{\prime })]=\delta (t-t^{\prime })} allows the model to have a strict correspondence with aMarkovian master equation.[2]: 142 

In the white noise setting described so far, the quantum Langevin equation for an arbitrary system operatora{\displaystyle a} takes a simpler form:[4]: 3763 

a˙=i[a,Hsys][a,c](γ2c+γbin(t))+(γ2c+γbin(t))[a,c].{\displaystyle {\dot {a}}=-{\frac {i}{\hbar }}[a,H_{\mathrm {sys} }]-[a,c^{\dagger }]\left({\frac {\gamma }{2}}c+{\sqrt {\gamma }}b_{\mathrm {in} }(t)\right)+\left({\frac {\gamma }{2}}c^{\dagger }+{\sqrt {\gamma }}b_{\mathrm {in} }^{\dagger }(t)\right)[a,c]\,.}   (WN1)

For the case most closely corresponding to classical white noise, the input to the system is described by adensity operator giving the followingexpectation value:[3]: 154 

bin(t)bin(t)ρin=Nδ(tt).{\displaystyle \langle b_{\mathrm {in} }^{\dagger }(t)b_{\mathrm {in} }(t^{\prime })\rangle _{\rho _{\mathrm {in} }}=N\delta (t-t^{\prime })\,.}WN2

Quantum Wiener process

[edit]

In order to define quantum stochastic integration, it is important to define a quantumWiener process:[3]: 155 [4]: 3765 

B(t,t0)=t0tbin(t)dt.{\displaystyle B(t,t_{0})=\int _{t_{0}}^{t}b_{\mathrm {in} }(t^{\prime })\mathrm {d} t^{\prime }\,.}

This definition gives the quantum Wiener process the commutation relation[B(t,t0),B(t,t0)]=tt0{\displaystyle [B(t,t_{0}),B^{\dagger }(t,t_{0})]=t-t_{0}}. The property of the bath annihilation operators in (WN2) implies that the quantum Wiener process has an expectation value of:

B(t,t0)B(t,t0)ρ(t,t0)=N(tt0).{\displaystyle \langle B^{\dagger }(t,t_{0})B(t,t_{0})\rangle _{\rho (t,t_{0})}=N(t-t_{0})\,.}

The quantum Wiener processes are also specified such that theirquasiprobability distributions areGaussian by defining the density operator:

ρ(t,t0)=(1eκ)exp[κB(t,t0)B(t,t0)tt0],{\displaystyle \rho (t,t_{0})=(1-e^{-\kappa })\exp \left[-{\frac {\kappa B^{\dagger }(t,t_{0})B(t,t_{0})}{t-t_{0}}}\right]\,,}

whereN=1/(eκ1){\displaystyle N=1/(e^{\kappa }-1)}.[4]: 3765 

Quantum stochastic integration

[edit]

The stochastic evolution of system operators can also be defined in terms of the stochastic integration of given equations.

Quantum Itô integral

[edit]

The quantumItô integral of a system operatorg(t){\displaystyle g(t)} is given by:[3]: 155 

(I)t0tg(t)dB(t)=limni=1ng(ti)(B(ti+1,t0)B(ti,t0)),{\displaystyle (\mathbf {I} )\int _{t_{0}}^{t}g(t^{\prime })\mathrm {d} B(t^{\prime })=\lim _{n\to \infty }\sum _{i=1}^{n}g(t_{i})\left(B(t_{i+1},t_{0})-B(t_{i},t_{0})\right)\,,}

where the bold (I) preceding the integral stands for Itô. One of the characteristics of defining the integral in this way is that the incrementsdB{\displaystyle \mathrm {d} B} anddB{\displaystyle \mathrm {d} B^{\dagger }} commute with the system operator.

Itô quantum stochastic differential equation

[edit]

In order to define the ItôQSDE, it is necessary to know something about the bath statistics.[3]: 159  In the context of the white noise formalism described earlier, the ItôQSDE can be defined as:[3]: 156 

(I)da=i[a,Hsys]dt+γ((N+1)D[c]a+ND[c]a)dtγ([a,c]dB(t)dB(t)[a,c]),{\displaystyle (\mathbf {I} )\,\mathrm {d} a=-{\frac {i}{\hbar }}[a,H_{\mathrm {sys} }]\mathrm {d} t+\gamma \left((N+1){\mathcal {D}}[c^{\dagger }]a+N{\mathcal {D}}[c]a\right)\mathrm {d} t-{\sqrt {\gamma }}\left([a,c^{\dagger }]\mathrm {d} B(t)-\mathrm {d} B^{\dagger }(t)[a,c]\right)\,,}

where the equation has been simplified using theLindblad superoperator:[2]: 105 

D[A]aAaA12(AAa+aAA).{\displaystyle {\mathcal {D}}[A]a\equiv AaA^{\dagger }-{\frac {1}{2}}\left(A^{\dagger }Aa+aA^{\dagger }A\right)\,.}

This differential equation is interpreted as defining the system operatora{\displaystyle a} as the quantum Itô integral of the right hand side, and is equivalent to the Langevin equation (WN1).[4]: 3765 

Quantum Stratonovich integral

[edit]

The quantumStratonovich integral of a system operatorg(t){\displaystyle g(t)} is given by:[3]: 157 

(S)t0tg(t)dB(t)=limni=1ng(ti)+g(ti+1)2(B(ti+1,t0)B(ti,t0)),{\displaystyle (\mathbf {S} )\int _{t_{0}}^{t}g(t^{\prime })\mathrm {d} B(t^{\prime })=\lim _{n\to \infty }\sum _{i=1}^{n}{\frac {g(t_{i})+g(t_{i+1})}{2}}\left(B(t_{i+1},t_{0})-B(t_{i},t_{0})\right)\,,}

where the bold (S) preceding the integral stands for Stratonovich. Unlike the Itô formulation, the increments in the Stratonovich integral do not commute with the system operator, and it can be shown that:[3]

(S)t0tg(t)dB(t)(S)t0tdB(t)g(t)=γ2t0tdt[g(t),c(t)].{\displaystyle (\mathbf {S} )\int _{t_{0}}^{t}g(t^{\prime })\mathrm {d} B(t^{\prime })-(\mathbf {S} )\int _{t_{0}}^{t}\mathrm {d} B(t^{\prime })g(t^{\prime })={\frac {\sqrt {\gamma }}{2}}\int _{t_{0}}^{t}\mathrm {d} t^{\prime }\,[g(t^{\prime }),c(t^{\prime })]\,.}

Stratonovich quantum stochastic differential equation

[edit]

The StratonovichQSDE can be defined as:[3]: 158 

(S)da=i[a,Hsys]dtγ2([a,c]cc[a,c])dtγ([a,c]dB(t)dB(t)[a,c]).{\displaystyle (\mathbf {S} )\,\mathrm {d} a=-{\frac {i}{\hbar }}[a,H_{\mathrm {sys} }]\mathrm {d} t-{\frac {\gamma }{2}}\left([a,c^{\dagger }]c-c^{\dagger }[a,c]\right)\mathrm {d} t-{\sqrt {\gamma }}\left([a,c^{\dagger }]\mathrm {d} B(t)-\mathrm {d} B^{\dagger }(t)[a,c]\right)\,.}

This differential equation is interpreted as defining the system operatora{\displaystyle a} as the quantum Stratonovich integral of the right hand side, and is in the same form as the Langevin equation (WN1).[4]: 3766–3767 

Relation between Itô and Stratonovich integrals

[edit]

The two definitions of quantum stochastic integrals relate to one another in the following way, assuming a bath withN{\displaystyle N} defined as before:[3]

(S)t0tg(t)dB(t)=(I)t0tg(t)dB(t)+12γNt0tdt[g(t),c(t)].{\displaystyle (\mathbf {S} )\int _{t_{0}}^{t}g(t^{\prime })\mathrm {d} B(t^{\prime })=(\mathbf {I} )\int _{t_{0}}^{t}g(t^{\prime })\mathrm {d} B(t^{\prime })+{\frac {1}{2}}{\sqrt {\gamma }}N\int _{t_{0}}^{t}\mathrm {d} t^{\prime }\,[g(t^{\prime }),c(t^{\prime })]\,.}

Calculus rules

[edit]

Just as with classical stochastic calculus, the appropriate product rule can be derived for Itô and Stratonovich integration, respectively:[3]: 156, 159 

(I)d(ab)=adb+bda+dadb,{\displaystyle (\mathbf {I} )\,\mathrm {d} (ab)=a\,\mathrm {d} b+b\,\mathrm {d} a+\mathrm {d} a\,\mathrm {d} b\,,}
(S)d(ab)=adb+dab.{\displaystyle (\mathbf {S} )\,\mathrm {d} (ab)=a\,\mathrm {d} b+\mathrm {d} a\,b\,.}

As is the case in classical stochastic calculus, the Stratonovich form is the one which preserves the ordinary calculus (which in this case is noncommuting). A peculiarity in the quantum generalization is the necessity to define both Itô and Stratonovitch integration in order to prove that the Stratonovitch form preserves the rules of noncommuting calculus.[3]: 155 

Quantum trajectories

[edit]

Quantum trajectories can generally be thought of as the path throughHilbert space that the state of a quantum system traverses over time. In a stochastic setting, these trajectories are oftenconditioned upon measurement results. The unconditioned Markovian evolution of a quantum system (averaged over all possible measurement outcomes) is given by a Lindblad equation. In order to describe the conditioned evolution in these cases, it is necessary tounravel the Lindblad equation by choosing a consistentQSDE. In the case where the conditioned system state is alwayspure, the unraveling could be in the form of a stochasticSchrödinger equation (SSE). If the state may become mixed, then it is necessary to use a stochastic master equation (SME).[2]: 148 

Example unravelings

[edit]
Plot of the evolution of the z-component of theBloch vector of a two-level atom coupled to the electromagnetic field undergoing dampedRabi oscillations. The top plot shows the quantum trajectory for the atom for photon-counting measurements performed on the electromagnetic field, the middle plot shows the same for homodyne detection, and the bottom plot compares the previous two measurement choices (each averaged over 32 trajectories) with the unconditioned evolution given by the master equation.

Consider the following Lindblad master equation for a system interacting with a vacuum bath:[2]: 145 

ρ˙=D[c]ρi[Hsys,ρ].{\displaystyle {\dot {\rho }}={\mathcal {D}}[c]\rho -i[H_{\mathrm {sys} },\rho ]\,.}

This describes the evolution of the system state averaged over the outcomes of any particular measurement that might be made on the bath. The followingSME describes the evolution of the system conditioned on the results of a continuousphoton-counting measurement performed on the bath:

dρI(t)=(dN(t)G[c]dtH[iHsys+12cc])ρI(t),{\displaystyle \mathrm {d} \rho _{I}(t)=\left(\mathrm {d} N(t){\mathcal {G}}[c]-\mathrm {d} t{\mathcal {H}}[iH_{\mathrm {sys} }+{\frac {1}{2}}c^{\dagger }c]\right)\rho _{I}(t)\,,}

where

G[r]ρrρrTr[rρr]ρH[r]ρrρ+ρrTr[rρ+ρr]ρ{\displaystyle {\begin{array}{rcl}{\mathcal {G}}[r]\rho &\equiv &{\frac {r\rho r^{\dagger }}{\operatorname {Tr} [r\rho r^{\dagger }]}}-\rho \\{\mathcal {H}}[r]\rho &\equiv &r\rho +\rho r^{\dagger }-\operatorname {Tr} [r\rho +\rho r^{\dagger }]\rho \end{array}}}

are nonlinear superoperators andN(t){\displaystyle N(t)} is the photocount, indicating how many photons have been detected at timet{\displaystyle t} and giving the following jump probability:[2]: 152, 155 

E[dN(t)]=dtTr[ccρI(t)],{\displaystyle \operatorname {E} [\mathrm {d} N(t)]=\mathrm {d} t\operatorname {Tr} [c^{\dagger }c\rho _{I}(t)]\,,}

whereE[]{\displaystyle \operatorname {E} [\cdot ]} denotes the expected value. Another type of measurement that could be made on the bath ishomodyne detection, which results in quantum trajectories given by the followingSME:

dρJ(t)=i[Hsys,ρJ(t)]dt+dtD[c]ρJ(t)+dW(t)H[c]ρJ(t),{\displaystyle \mathrm {d} \rho _{J}(t)=-i[H_{\mathrm {sys} },\rho _{J}(t)]\mathrm {d} t+\mathrm {d} t{\mathcal {D}}[c]\rho _{J}(t)+\mathrm {d} W(t){\mathcal {H}}[c]\rho _{J}(t)\,,}

wheredW(t){\displaystyle \mathrm {d} W(t)} is a Wiener increment satisfying:[2]: 161 

dW(t)2=dtE[dW(t)]=0.{\displaystyle {\begin{array}{rcl}\mathrm {d} W(t)^{2}&=&\mathrm {d} t\\\operatorname {E} [\mathrm {d} W(t)]&=&0\,.\end{array}}}

Although these twoSMEs look wildly different, calculating their expected evolution shows that they are both indeed unravelings of the same Lindlad master equation:

E[dρI(t)]=E[dρJ(t)]=ρ˙dt.{\displaystyle \operatorname {E} [\mathrm {d} \rho _{I}(t)]=\operatorname {E} [\mathrm {d} \rho _{J}(t)]={\dot {\rho }}\mathrm {d} t\,.}

Computational considerations

[edit]

One important application of quantum trajectories is reducing the computational resources required to simulate a master equation. For a Hilbert space of dimensiond, the amount of real numbers required to store the density matrix is of orderd2, and the time required to compute the master equation evolution is of orderd4. Storing the state vector for aSSE, on the other hand, only requires an amount of real numbers of orderd, and the time to compute trajectory evolution is only of orderd2. The master equation evolution can then be approximated by averaging over many individual trajectories simulated using theSSE, a technique sometimes referred to as theMonte Carlo wave-function approach.[5] Although the number of calculated trajectoriesn must be very large in order to accurately approximate the master equation, good results can be obtained for trajectory counts much less thand2. Not only does this technique yield faster computation time, but it also allows for the simulation of master equations on machines that do not have enough memory to store the entire density matrix.[2]: 153 

References

[edit]
  1. ^Hudson, R. L.;Parthasarathy, K. R. (1984-09-01)."Quantum Ito's Formula and Stochastic Evolutions".Communications in Mathematical Physics.93 (3):301–323.Bibcode:1984CMaPh..93..301H.doi:10.1007/BF01258530.S2CID 122848524.
  2. ^abcdefghWiseman, Howard M.; Milburn, Gerard J. (2010).Quantum Measurement and Control. New York: Cambridge University Press.ISBN 978-0-521-80442-4.
  3. ^abcdefghijklmnopGardiner, C. W.;Zoller, P. (2010).Quantum Noise. Springer Series in Synergetics (3rd ed.). Berlin Heidelberg: Springer-Verlag.ISBN 978-3-642-06094-6.
  4. ^abcdefghGardiner, C. W.; Collett, M. J. (June 1985). "Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation".Physical Review A.31 (6):3761–3774.Bibcode:1985PhRvA..31.3761G.doi:10.1103/PhysRevA.31.3761.PMID 9895956.
  5. ^Dalibard, Jean; Castin, Yvan; Mølmer, Klaus (Feb 1992). "Wave-function approach to dissipative processes in quantum optics".Phys. Rev. Lett.68 (5). American Physical Society:580–583.arXiv:0805.4002.Bibcode:1992PhRvL..68..580D.doi:10.1103/PhysRevLett.68.580.PMID 10045937.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quantum_stochastic_calculus&oldid=1313237082"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp