Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quantum Fourier transform

From Wikipedia, the free encyclopedia
Change of basis applied in quantum computing

Inquantum computing, thequantum Fourier transform (QFT) is alinear transformation onquantum bits, and is the quantum analogue of thediscrete Fourier transform. The quantum Fourier transform is a part of manyquantum algorithms, notablyShor's algorithm for factoring and computing thediscrete logarithm, thequantum phase estimation algorithm for estimating theeigenvalues of aunitary operator, and algorithms for thehidden subgroup problem. The quantum Fourier transform was discovered byDon Coppersmith.[1] With small modifications to the QFT, it can also be used for performing fastinteger arithmetic operations such as addition and multiplication.[2][3][4]

The quantum Fourier transform can be performed efficiently on a quantum computer with a decomposition into the product of simplerunitary matrices. The discrete Fourier transform on2n{\displaystyle 2^{n}} amplitudes can be implemented as aquantum circuit consisting of onlyO(n2){\displaystyle O(n^{2})}Hadamard gates andcontrolledphase shift gates, wheren{\displaystyle n} is the number of qubits.[5] This can be compared with the classical discrete Fourier transform, which takesO(n2n){\displaystyle O(n2^{n})} gates (wheren{\displaystyle n} is the number of bits), which is exponentially more thanO(n2){\displaystyle O(n^{2})}.

The quantum Fourier transform acts on aquantum state vector (aquantum register), and the classicaldiscrete Fourier transform acts on a vector. Both types of vectors can be written as lists of complex numbers. In the classical case, the vector can be represented with e.g. an array offloating-point numbers, and in the quantum case it is a sequence ofprobability amplitudes for all the possible outcomes uponmeasurement (the outcomes are thebasis states, oreigenstates). Because measurementcollapses the quantum state to a single basis state, not every task that uses the classical Fourier transform can take advantage of the quantum Fourier transform's exponential speedup.

The best quantum Fourier transform algorithms known (as of late 2000) require onlyO(nlogn){\displaystyle O(n\log n)} gates to achieve an efficient approximation, provided that acontrolledphase gate is implemented as a native operation.[6]

Definition

[edit]

The quantum Fourier transform is the classical discrete Fourier transform applied to the vector of amplitudes of a quantum state, which has lengthN=2n{\displaystyle N=2^{n}} if it is applied to a register ofn{\displaystyle n} qubits.

Theclassical Fourier transform acts on avector(x0,x1,,xN1)CN{\displaystyle (x_{0},x_{1},\ldots ,x_{N-1})\in \mathbb {C} ^{N}} and maps it to the vector(y0,y1,,yN1)CN{\displaystyle (y_{0},y_{1},\ldots ,y_{N-1})\in \mathbb {C} ^{N}} according to the formula

yk=1Nj=0N1xjωNjk,k=0,1,2,,N1,{\displaystyle y_{k}={\frac {1}{\sqrt {N}}}\sum _{j=0}^{N-1}x_{j}\omega _{N}^{-jk},\quad k=0,1,2,\ldots ,N-1,}

whereωN=e2πiN{\displaystyle \omega _{N}=e^{\frac {2\pi i}{N}}} is anN-throot of unity.

Similarly, thequantum Fourier transform acts on a quantum state|x=j=0N1xj|j{\textstyle |x\rangle =\sum _{j=0}^{N-1}x_{j}|j\rangle } and maps it to a quantum statej=0N1yj|j{\textstyle \sum _{j=0}^{N-1}y_{j}|j\rangle } according to the formula

yk=1Nj=0N1xjωNjk,k=0,1,2,,N1.{\displaystyle y_{k}={\frac {1}{\sqrt {N}}}\sum _{j=0}^{N-1}x_{j}\omega _{N}^{jk},\quad k=0,1,2,\ldots ,N-1.}

(Conventions for the sign of the phase factor exponent vary; here the quantum Fourier transform has the same effect as the inverse discrete Fourier transform, and conversely.)

SinceωNl{\displaystyle \omega _{N}^{l}} is a rotation, theinverse quantum Fourier transform acts similarly but with

xj=1Nk=0N1ykωNjk,j=0,1,2,,N1,{\displaystyle x_{j}={\frac {1}{\sqrt {N}}}\sum _{k=0}^{N-1}y_{k}\omega _{N}^{-jk},\quad j=0,1,2,\ldots ,N-1,}

In case that|x{\displaystyle |x\rangle } is a basis state, the quantum Fourier transform can also be expressed as the map

QFT:|x1Nk=0N1ωNxk|k.{\displaystyle \operatorname {QFT} :|x\rangle \mapsto {\frac {1}{\sqrt {N}}}\sum _{k=0}^{N-1}\omega _{N}^{xk}|k\rangle .}

Equivalently, the quantum Fourier transform can be viewed as aunitary matrix (orquantum gate) acting on quantum state vectors, where the unitary matrixFN{\displaystyle F_{N}} is theDFT matrix

FN=1N[111111ωω2ω3ωN11ω2ω4ω6ω2(N1)1ω3ω6ω9ω3(N1)1ωN1ω2(N1)ω3(N1)ω(N1)(N1)],{\displaystyle F_{N}={\frac {1}{\sqrt {N}}}{\begin{bmatrix}1&1&1&1&\cdots &1\\1&\omega &\omega ^{2}&\omega ^{3}&\cdots &\omega ^{N-1}\\1&\omega ^{2}&\omega ^{4}&\omega ^{6}&\cdots &\omega ^{2(N-1)}\\1&\omega ^{3}&\omega ^{6}&\omega ^{9}&\cdots &\omega ^{3(N-1)}\\\vdots &\vdots &\vdots &\vdots &\ddots &\vdots \\1&\omega ^{N-1}&\omega ^{2(N-1)}&\omega ^{3(N-1)}&\cdots &\omega ^{(N-1)(N-1)}\end{bmatrix}},}

whereω=ωN{\displaystyle \omega =\omega _{N}}. For example, in the case ofN=4=22{\displaystyle N=4=2^{2}} and phaseω=i{\displaystyle \omega =i} the transformation matrix is

F4=12[11111i1i11111i1i]{\displaystyle F_{4}={\frac {1}{2}}{\begin{bmatrix}1&1&1&1\\1&i&-1&-i\\1&-1&1&-1\\1&-i&-1&i\end{bmatrix}}}
See also:Generalizations of Pauli matrices § Construction: The clock and shift matrices

Properties

[edit]

Unitarity

[edit]

Most of the properties of the quantum Fourier transform follow from the fact that it is aunitary transformation. This can be checked by performingmatrix multiplication and ensuring that the relationFF=FF=I{\displaystyle FF^{\dagger }=F^{\dagger }F=I} holds, whereF{\displaystyle F^{\dagger }} is theHermitian adjoint ofF{\displaystyle F}. Alternately, one can check that orthogonal vectors ofnorm 1 get mapped to orthogonal vectors of norm 1.

From the unitary property it follows that the inverse of the quantum Fourier transform is the Hermitian adjoint of the Fourier matrix, thusF1=F{\displaystyle F^{-1}=F^{\dagger }}. Since there is an efficient quantum circuit implementing the quantum Fourier transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform. Thus both transforms can be efficiently performed on a quantum computer.

Circuit implementation

[edit]

Thequantum gates used in the circuit ofn{\displaystyle n} qubits are theHadamard gate and thedyadic rationalphase gateRk{\displaystyle R_{k}}:

H=12(1111)andRk=(100ei2π/2k){\displaystyle H={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1&1\\1&-1\end{pmatrix}}\qquad {\text{and}}\qquad R_{k}={\begin{pmatrix}1&0\\0&e^{i2\pi /2^{k}}\end{pmatrix}}}

The circuit is composed ofH{\displaystyle H} gates and thecontrolled version ofRk{\displaystyle R_{k}}:

Quantum circuit for Quantum-Fourier-Transform with n qubits using the fractional binary notation defined below.

An orthonormal basisS{\displaystyle S} is composed of basis states

S={|0,,|2n1}{\displaystyle S=\{|0\rangle ,\ldots ,|2^{n}-1\rangle \}}

These basis states span all possible states of the qubits. As in, each|xS{\displaystyle |x\rangle \in S} is:

|x=|x1x2xn=|x1|x2|xn{\displaystyle |x\rangle =|x_{1}x_{2}\ldots x_{n}\rangle =|x_{1}\rangle \otimes |x_{2}\rangle \otimes \cdots \otimes |x_{n}\rangle }

where, withtensor product notation{\displaystyle \otimes },|xj{\displaystyle |x_{j}\rangle } indicates that qubitj{\displaystyle j} is in statexj{\displaystyle x_{j}}, withxj{\displaystyle x_{j}} either 0 or 1. By convention, the basis state indexx{\displaystyle x} is thebinary number encoded by thexj{\displaystyle x_{j}}, withx1{\displaystyle x_{1}} the most significant bit.

The action of the Hadamard gate isH|xj=(12)(|0+e2πixj21|1){\displaystyle H|x_{j}\rangle =\left({\frac {1}{\sqrt {2}}}\right)\left(|0\rangle +e^{2\pi ix_{j}2^{-1}}|1\rangle \right)}, where the sign depends onxj{\displaystyle x_{j}}.

The quantum Fourier transform can be written as the tensor product of a series of terms:

QFT(|x)=1Nj=1n(|0+ωNx2nj|1).{\displaystyle {\text{QFT}}(|x\rangle )={\frac {1}{\sqrt {N}}}\bigotimes _{j=1}^{n}\left(|0\rangle +\omega _{N}^{x2^{n-j}}|1\rangle \right).}

Using the fractional binary notation

[0.x1xm]=k=1mxk2k,{\displaystyle [0.x_{1}\ldots x_{m}]=\sum _{k=1}^{m}x_{k}2^{-k},}

the action of the quantum Fourier transform can be expressed in a compact manner:

QFT(|x1x2xn)=1N (|0+e2πi[0.xn]|1)(|0+e2πi[0.xn1xn]|1)(|0+e2πi[0.x1x2xn]|1).{\displaystyle {\text{QFT}}(|x_{1}x_{2}\ldots x_{n}\rangle )={\frac {1}{\sqrt {N}}}\ \left(|0\rangle +e^{2\pi i\,[0.x_{n}]}|1\rangle \right)\otimes \left(|0\rangle +e^{2\pi i\,[0.x_{n-1}x_{n}]}|1\rangle \right)\otimes \cdots \otimes \left(|0\rangle +e^{2\pi i\,[0.x_{1}x_{2}\ldots x_{n}]}|1\rangle \right).}

To obtain this state from the circuit depicted above, aswap operation of the qubits must be performed to reverse their order. At mostn/2{\displaystyle n/2} swaps are required.[5]

Because the discrete Fourier transform, an operation onn qubits, can be factored into the tensor product ofn single-qubit operations, it is easily represented as aquantum circuit (up to an order reversal of the output). Each of those single-qubit operations can be implemented efficiently using oneHadamard gate and a linear number ofcontrolledphase gates. The first term requires one Hadamard gate and(n1){\displaystyle (n-1)} controlled phase gates, the next term requires one Hadamard gate and(n2){\displaystyle (n-2)} controlled phase gate, and each following term requires one fewer controlled phase gate. Summing up the number of gates, excluding the ones needed for the output reversal, givesn+(n1)++1=n(n+1)/2=O(n2){\displaystyle n+(n-1)+\cdots +1=n(n+1)/2=O(n^{2})} gates, which is quadratic polynomial in the number of qubits. This value is much smaller than for the classical Fourier transformation.[7]

The circuit-level implementation of the quantum Fourier transform on a linear nearest neighbor architecture has been studied before.[8][9] Thecircuit depth is linear in the number of qubits.

Example

[edit]

The quantum Fourier transform on three qubits,F8{\displaystyle F_{8}} withn=3,N=8=23{\displaystyle n=3,N=8=2^{3}}, is represented by the following transformation:

QFT:|x18k=07ωxk|k,{\displaystyle {\text{QFT}}:|x\rangle \mapsto {\frac {1}{\sqrt {8}}}\sum _{k=0}^{7}\omega ^{xk}|k\rangle ,}

whereω=ω8{\displaystyle \omega =\omega _{8}} is an eighthroot of unity satisfyingω8=(ei2π8)8=1{\displaystyle \omega ^{8}=\left(e^{\frac {i2\pi }{8}}\right)^{8}=1}.

The matrix representation of the Fourier transform on three qubits is:

F8=18[111111111ωω2ω3ω4ω5ω6ω71ω2ω4ω61ω2ω4ω61ω3ω6ωω4ω7ω2ω51ω41ω41ω41ω41ω5ω2ω7ω4ωω6ω31ω6ω4ω21ω6ω4ω21ω7ω6ω5ω4ω3ω2ω].{\displaystyle F_{8}={\frac {1}{\sqrt {8}}}{\begin{bmatrix}1&1&1&1&1&1&1&1\\1&\omega &\omega ^{2}&\omega ^{3}&\omega ^{4}&\omega ^{5}&\omega ^{6}&\omega ^{7}\\1&\omega ^{2}&\omega ^{4}&\omega ^{6}&1&\omega ^{2}&\omega ^{4}&\omega ^{6}\\1&\omega ^{3}&\omega ^{6}&\omega &\omega ^{4}&\omega ^{7}&\omega ^{2}&\omega ^{5}\\1&\omega ^{4}&1&\omega ^{4}&1&\omega ^{4}&1&\omega ^{4}\\1&\omega ^{5}&\omega ^{2}&\omega ^{7}&\omega ^{4}&\omega &\omega ^{6}&\omega ^{3}\\1&\omega ^{6}&\omega ^{4}&\omega ^{2}&1&\omega ^{6}&\omega ^{4}&\omega ^{2}\\1&\omega ^{7}&\omega ^{6}&\omega ^{5}&\omega ^{4}&\omega ^{3}&\omega ^{2}&\omega \\\end{bmatrix}}.}

The 3-qubit quantum Fourier transform can be rewritten as:

QFT(|x1,x2,x3)=18 (|0+e2πi[0.x3]|1)(|0+e2πi[0.x2x3]|1)(|0+e2πi[0.x1x2x3]|1).{\displaystyle {\text{QFT}}(|x_{1},x_{2},x_{3}\rangle )={\frac {1}{\sqrt {8}}}\ \left(|0\rangle +e^{2\pi i\,[0.x_{3}]}|1\rangle \right)\otimes \left(|0\rangle +e^{2\pi i\,[0.x_{2}x_{3}]}|1\rangle \right)\otimes \left(|0\rangle +e^{2\pi i\,[0.x_{1}x_{2}x_{3}]}|1\rangle \right).}

The following sketch shows the respective circuit forn=3{\displaystyle n=3} (with reversed order of output qubits with respect to the proper QFT):

QFT for 3 Qubits

As calculated above, the number of gates used isn(n+1)/2{\displaystyle n(n+1)/2} which is equal to6{\displaystyle 6}, forn=3{\displaystyle n=3}.

Relation to quantum Hadamard transform

[edit]
See also:Hadamard transform § Quantum computing applications

Using the generalizedFourier transform on finite (abelian) groups, there are actually two natural ways to define a quantum Fourier transform on ann-qubitquantum register. The QFT as defined above is equivalent to the DFT, which considers these n qubits as indexed by the cyclic groupZ/2nZ{\displaystyle \mathbb {Z} /2^{n}\mathbb {Z} }. However, it also makes sense to consider the qubits as indexed by theBoolean group(Z/2Z)n{\displaystyle (\mathbb {Z} /2\mathbb {Z} )^{n}}, and in this case the Fourier transform is theHadamard transform. This is achieved by applying aHadamard gate to each of the n qubits in parallel.[10][11]Shor's algorithm uses both types of Fourier transforms, an initial Hadamard transform as well as a QFT.

For other groups

[edit]

The Fourier transform can be formulated forgroups other than the cyclic group, and extended to the quantum setting.[12] For example, consider the symmetric groupSn{\displaystyle S_{n}}.[13][14] The Fourier transform can be expressed in matrix form

Fn=λΛnp,qP(λ)gSndλn![λ(g)]q,p|λ,p,qg|,{\displaystyle {\mathfrak {F}}_{n}=\sum _{\lambda \in \Lambda _{n}}\sum _{p,q\in {\mathcal {P}}(\lambda )}\sum _{g\in S_{n}}{\sqrt {\frac {d_{\lambda }}{n!}}}[\lambda (g)]_{q,p}|\lambda ,p,q\rangle \langle g|,}

where[λ(g)]q,p{\displaystyle [\lambda (g)]_{q,p}} is the(q,p){\displaystyle (q,p)} element of the matrix representation ofλ(g){\displaystyle \lambda (g)},P(λ){\displaystyle {\mathcal {P}}(\lambda )} is the set of paths from the root node toλ{\displaystyle \lambda } in theBratteli diagram ofSn{\displaystyle S_{n}},Λn{\displaystyle \Lambda _{n}} is the set of representations ofSn{\displaystyle S_{n}} indexed byYoung diagrams, andg{\displaystyle g} is a permutation.

Over a finite field

[edit]

The discrete Fourier transform can also beformulated over a finite fieldFq{\displaystyle F_{q}}, and a quantum version can be defined.[15] ConsiderN=q=pn{\displaystyle N=q=p^{n}}. Letϕ:GF(q)GF(p){\displaystyle \phi :GF(q)\to GF(p)} be an arbitrary linear map (trace, for example). Then for eachxGF(q){\displaystyle x\in GF(q)} define

Fq,ϕ:|x1qyGF(q)ωϕ(xy)|y{\displaystyle F_{q,\phi }:|x\rangle \mapsto {\frac {1}{\sqrt {q}}}\sum _{y\in GF(q)}\omega ^{\phi (xy)}|y\rangle }

forω=e2πi/p{\displaystyle \omega =e^{2\pi i/p}} and extendFq,ϕ{\displaystyle F_{q,\phi }} linearly.

References

[edit]
  1. ^Coppersmith, D. (2002). An approximate Fourier transform useful in quantum factoring (Preprint).arXiv:quant-ph/0201067.
  2. ^Draper, Thomas G. (7 Aug 2000). "Addition on a Quantum Computer".arXiv:quant-ph/0008033.
  3. ^Ruiz-Perez, Lidia; Juan Carlos, Garcia-Escartin (2 May 2017). "Quantum arithmetic with the quantum Fourier transform".Quantum Information Processing.16 (6): 152.arXiv:1411.5949v2.Bibcode:2017QuIP...16..152R.doi:10.1007/s11128-017-1603-1.S2CID 10948948.
  4. ^Şahin, Engin (2020). "Quantum arithmetic operations based on quantum Fourier transform on signed integers".International Journal of Quantum Information.18 (6): 2050035.arXiv:2005.00443v3.Bibcode:2020IJQI...1850035S.doi:10.1142/s0219749920500355.ISSN 1793-6918.
  5. ^abNielsen, Michael A.; Chuang, Isaac L. (2012).Quantum Computation and Quantum Information.doi:10.1017/CBO9780511976667.ISBN 978-1-107-00217-3.
  6. ^Hales, L.; Hallgren, S. (November 12–14, 2000). "An improved quantum Fourier transform algorithm and applications".Proceedings 41st Annual Symposium on Foundations of Computer Science. pp. 515–525.CiteSeerX 10.1.1.29.4161.doi:10.1109/SFCS.2000.892139.ISBN 0-7695-0850-2.S2CID 424297.
  7. ^Kurgalin, Sergei; Borzunov, Sergei (2021).Concise guide to quantum computing: algorithms, exercises, and implementations. Texts in computer science. Cham: Springer.ISBN 978-3-030-65054-4.
  8. ^Fowler, A.G.; Devitt, S.J.; Hollenberg, L.C.L. (July 2004). "Implementation of Shor's algorithm on a linear nearest neighbour qubit array".Quantum Information and Computation.4 (4):237–251.doi:10.26421/QIC4.4-1.
  9. ^Maslov, Dmitri (15 November 2007). "Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite-neighbor quantum architectures".Physical Review A.76 (5) 052310.arXiv:quant-ph/0703211.Bibcode:2007PhRvA..76e2310M.doi:10.1103/PhysRevA.76.052310.S2CID 18645435.
  10. ^Fourier Analysis of Boolean Maps– A Tutorial –, pp. 12-13Archived 2021-05-01 at theWayback Machine[full citation needed]
  11. ^Lecture 5: Basic quantum algorithms, Rajat Mittal, pp. 4-5
  12. ^Moore, Cristopher; Rockmore, Daniel; Russell, Alexander (2003). Generic Quantum Fourier Transforms (Preprint).arXiv:quant-ph/0304064.
  13. ^Kawano, Yasuhito; Sekigawa, Hiroshi (July 2016). "Quantum Fourier transform over symmetric groups — improved result".Journal of Symbolic Computation.75:219–243.doi:10.1016/j.jsc.2015.11.016.
  14. ^Beals, Robert (1997). "Quantum computation of Fourier transforms over symmetric groups".Proceedings of the twenty-ninth annual ACM symposium on Theory of computing - STOC '97. pp. 48–53.doi:10.1145/258533.258548.ISBN 0-89791-888-6.
  15. ^de Beaudrap, Niel; Cleve, Richard; Waltrous, John (8 November 2002). "Sharp Quantum versus Classical Query Complexity Separations".Algorithmica.34 (4):449–461.doi:10.1007/s00453-002-0978-1.

Further reading

[edit]

External links

[edit]
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quantum_Fourier_transform&oldid=1326946991"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp