Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quadratic Gauss sum

From Wikipedia, the free encyclopedia

Innumber theory,quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complexexponential function with coefficients given by a quadratic character; for a general character, one obtains a more generalGauss sum. These objects are named afterCarl Friedrich Gauss, who studied them extensively and applied them toquadratic,cubic, andbiquadratic reciprocity laws.

Definition

[edit]

For an oddprime numberp and an integera, thequadratic Gauss sumg(a;p) is defined as

g(a;p)=n=0p1ζpan2,{\displaystyle g(a;p)=\sum _{n=0}^{p-1}\zeta _{p}^{an^{2}},}

whereζp{\displaystyle \zeta _{p}} is aprimitivepth root of unity, for exampleζp=exp(2πi/p){\displaystyle \zeta _{p}=\exp(2\pi i/p)}.Equivalently,

g(a;p)=n=0p1(1+(np))ζpan.{\displaystyle g(a;p)=\sum _{n=0}^{p-1}{\big (}1+\left({\tfrac {n}{p}}\right){\big )}\,\zeta _{p}^{an}.}

Fora divisible byp, and we haveζpan2=1{\displaystyle \zeta _{p}^{an^{2}}=1} and thus

g(a;p)=p.{\displaystyle g(a;p)=p.}

Fora not divisible byp, we haven=0p1ζpan=0{\displaystyle \sum _{n=0}^{p-1}\zeta _{p}^{an}=0}, implying that

g(a;p)=n=0p1(np)ζpan=G(a,(p)),{\displaystyle g(a;p)=\sum _{n=0}^{p-1}\left({\tfrac {n}{p}}\right)\,\zeta _{p}^{an}=G(a,\left({\tfrac {\cdot }{p}}\right)),}

where

G(a,χ)=n=0p1χ(n)ζpan{\displaystyle G(a,\chi )=\sum _{n=0}^{p-1}\chi (n)\,\zeta _{p}^{an}}

is theGauss sum defined for any characterχ modulop.

Properties

[edit]
g(a;p)=(ap)g(1;p).{\displaystyle g(a;p)=\left({\tfrac {a}{p}}\right)g(1;p).}
  • The exact value of the Gauss sum fora = 1 is given by the formula:[1]
g(1;p)=n=0p1e2πin2p={(1+i)pif p0(mod4),pif p1(mod4),0if p2(mod4),ipif p3(mod4).{\displaystyle g(1;p)=\sum _{n=0}^{p-1}e^{\frac {2\pi in^{2}}{p}}={\begin{cases}(1+i){\sqrt {p}}&{\text{if}}\ p\equiv 0{\pmod {4}},\\{\sqrt {p}}&{\text{if}}\ p\equiv 1{\pmod {4}},\\0&{\text{if}}\ p\equiv 2{\pmod {4}},\\i{\sqrt {p}}&{\text{if}}\ p\equiv 3{\pmod {4}}.\end{cases}}}
Remark

In fact, the identity

g(1;p)2=(1p)p{\displaystyle g(1;p)^{2}=\left({\tfrac {-1}{p}}\right)p}

was easy to prove and led to one of Gauss'sproofs of quadratic reciprocity. However, the determination of thesign of the Gauss sum turned out to be considerably more difficult: Gauss could only establish it after several years' work. Later,Dirichlet,Kronecker,Schur and other mathematicians found different proofs.

Generalized quadratic Gauss sums

[edit]

Leta,b,c benatural numbers. Thegeneralized quadratic Gauss sumG(a,b,c) is defined by

G(a,b,c)=n=0c1e2πian2+bnc{\displaystyle G(a,b,c)=\sum _{n=0}^{c-1}e^{2\pi i{\frac {an^{2}+bn}{c}}}}.

The classical quadratic Gauss sum is the sumg(a,p) =G(a, 0,p).

Properties
  • The Gauss sumG(a,b,c) depends only on theresidue class ofa andb moduloc.
  • Gauss sums aremultiplicative, i.e. given natural numbersa,b,c,d withgcd(c,d) = 1 one has
G(a,b,cd)=G(ac,b,d)G(ad,b,c).{\displaystyle G(a,b,cd)=G(ac,b,d)G(ad,b,c).}
This is a direct consequence of theChinese remainder theorem.
  • One hasG(a,b,c) = 0 ifgcd(a,c) > 1 except ifgcd(a,c) dividesb in which case one has
G(a,b,c)=gcd(a,c)G(agcd(a,c),bgcd(a,c),cgcd(a,c)){\displaystyle G(a,b,c)=\gcd(a,c)\cdot G\left({\frac {a}{\gcd(a,c)}},{\frac {b}{\gcd(a,c)}},{\frac {c}{\gcd(a,c)}}\right)}.
Thus in the evaluation of quadratic Gauss sums one may always assumegcd(a,c) = 1.
  • Leta,b,c be integers withac ≠ 0 andac +b even. One has the following analogue of thequadratic reciprocity law for (even more general) Gauss sums[2]
n=0|c|1eπian2+bnc=|ca|12eπi|ac|b24acn=0|a|1eπicn2+bna{\displaystyle \sum _{n=0}^{|c|-1}e^{\pi i{\frac {an^{2}+bn}{c}}}=\left|{\frac {c}{a}}\right|^{\frac {1}{2}}e^{\pi i{\frac {|ac|-b^{2}}{4ac}}}\sum _{n=0}^{|a|-1}e^{-\pi i{\frac {cn^{2}+bn}{a}}}}.
  • Define
εm={1if m1(mod4)iif m3(mod4){\displaystyle \varepsilon _{m}={\begin{cases}1&{\text{if}}\ m\equiv 1{\pmod {4}}\\i&{\text{if}}\ m\equiv 3{\pmod {4}}\end{cases}}}
for every odd integerm. The values of Gauss sums withb = 0 andgcd(a,c) = 1 are explicitly given by
G(a,c)=G(a,0,c)={0if c2(mod4)εcc(ac)if c1(mod2)(1+i)εa1c(ca)if c0(mod4).{\displaystyle G(a,c)=G(a,0,c)={\begin{cases}0&{\text{if}}\ c\equiv 2{\pmod {4}}\\\varepsilon _{c}{\sqrt {c}}\left({\dfrac {a}{c}}\right)&{\text{if}}\ c\equiv 1{\pmod {2}}\\(1+i)\varepsilon _{a}^{-1}{\sqrt {c}}\left({\dfrac {c}{a}}\right)&{\text{if}}\ c\equiv 0{\pmod {4}}.\end{cases}}}
Here(a/c) is theJacobi symbol. This is the famous formula ofCarl Friedrich Gauss.
  • Forb > 0 the Gauss sums can easily be computed bycompleting the square in most cases. This fails however in some cases (for example,c even andb odd), which can be computed relatively easy by other means. For example, ifc is odd andgcd(a,c) = 1 one has
G(a,b,c)=εcc(ac)e2πiψ(a)b2c,{\displaystyle G(a,b,c)=\varepsilon _{c}{\sqrt {c}}\cdot \left({\frac {a}{c}}\right)e^{-2\pi i{\frac {\psi (a)b^{2}}{c}}},}
whereψ(a) is some number with4ψ(a)a ≡ 1 (modc). As another example, if 4 dividesc andb is odd and as alwaysgcd(a,c) = 1 thenG(a,b,c) = 0. This can, for example, be proved as follows: because of the multiplicative property of Gauss sums we only have to show thatG(a,b, 2m) = 0 ifn > 1 anda,b are odd withgcd(a,c) = 1. Ifb is odd thenan2 +bn is even for all0 ≤n <c − 1. For everyq, the equationan2 +bn +q = 0 has at most two solutions inZ{\displaystyle \mathbb {Z} }/2nZ{\displaystyle \mathbb {Z} }. Indeed, ifn1{\displaystyle n_{1}} andn2{\displaystyle n_{2}} are two solutions of same parity, then(n1n2)(a(n1+n2)+b)=α2m{\displaystyle (n_{1}-n_{2})(a(n_{1}+n_{2})+b)=\alpha 2^{m}} for some integerα{\displaystyle \alpha }, but(a(j1+j2)+b){\displaystyle (a(j_{1}+j_{2})+b)} is odd, hencej1j2(mod2m){\displaystyle j_{1}\equiv j_{2}{\pmod {2^{m}}}}.[clarification needed] Because of a counting argumentan2 +bn runs through all even residue classes moduloc exactly two times. Thegeometric sum formula then shows thatG(a,b, 2m) = 0.
G(a,0,c)=n=0c1(nc)e2πianc.{\displaystyle G(a,0,c)=\sum _{n=0}^{c-1}\left({\frac {n}{c}}\right)e^{\frac {2\pi ian}{c}}.}
Ifc is not squarefree then the right side vanishes while the left side does not. Often the right sum is also called a quadratic Gauss sum.
  • Another useful formula
G(n,pk)=pG(n,pk2){\displaystyle G\left(n,p^{k}\right)=p\cdot G\left(n,p^{k-2}\right)}
holds fork ≥ 2 and an odd prime numberp, and fork ≥ 4 andp = 2.

See also

[edit]

References

[edit]
  1. ^M. Murty, S. Pathak, The Mathematics Student Vol. 86, Nos. 1-2, January-June (2017), xx-yy ISSN: 0025-5742https://mast.queensu.ca/~murty/quadratic2.pdf
  2. ^Theorem 1.2.2 in B. C. Berndt, R. J. Evans, K. S. Williams,Gauss and Jacobi Sums, John Wiley and Sons, (1998).
  • Ireland; Rosen (1990).A Classical Introduction to Modern Number Theory. Springer-Verlag.ISBN 0-387-97329-X.
  • Berndt, Bruce C.; Evans, Ronald J.; Williams, Kenneth S. (1998).Gauss and Jacobi Sums. Wiley and Sons.ISBN 0-471-12807-4.
  • Iwaniec, Henryk; Kowalski, Emmanuel (2004).Analytic number theory. American Mathematical Society.ISBN 0-8218-3633-1.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quadratic_Gauss_sum&oldid=1251657656"
Category:
Hidden category:

[8]ページ先頭

©2009-2025 Movatter.jp