Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pyrithione

From Wikipedia, the free encyclopedia
Pyrithione
Interconversion of pyrithione tautomers
thione form on the left, thiol form on the right
Names
Preferred IUPAC name
1-Hydroxy-2(1H)-pyridinethione (thione)
2-Pyridinethiol 1-oxide (thiol)
Other names
Omadine
thione: 1-Hydroxypyridine-2-thione
     N-Hydroxypyridine-2-thione
thiol: 2-Mercaptopyridine monoxide
        2-MercaptopyridineN-oxide
        2-Mercaptopyridine 1-oxide
Identifiers
3D model (JSmol)
109936
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard100.013.027Edit this at Wikidata
EC Number
  • 214-328-9
  • thione: 214-329-4
913415
UNII
  • thione: InChI=1S/C5H5NOS/c7-6-4-2-1-3-5(6)8/h1-4,7H
    Key: YBBJKCMMCRQZMA-UHFFFAOYSA-N
  • thiol: InChI=1S/C5H5NOS/c7-6-4-2-1-3-5(6)8/h1-4,8H
    Key: FGVVTMRZYROCTH-UHFFFAOYSA-N
  • thiolate salt: InChI=1S/C5H5NOS.Na/c7-6-4-2-1-3-5(6)8;/h1-4,8H;/q;+1/p-1
    Key: WNGMMIYXPIAYOB-UHFFFAOYSA-M
  • thione salt: InChI=1S/C5H4NOS.Na/c7-6-4-2-1-3-5(6)8;/h1-4H;/q-1;+1
    Key: XNRNJIIJLOFJEK-UHFFFAOYSA-N
  • thione: c1ccn(c(=S)c1)O
  • thiol: C1=CC=[N+](C(=C1)S)[O-]
  • thiolate salt: c1cc[n+](c(c1)[S-])[O-].[Na+]
  • thione salt: c1ccn(c(=S)c1)[O-].[Na+]
Properties
C5H5NOS
Molar mass127.16 g·mol−1
AppearanceBeige crystalline powder
Melting point70 to 73 °C (158 to 163 °F; 343 to 346 K)
2.5 g L−1 at 20 °C
SolubilitySoluble:benzene,chloroform,dichloromethane,dimethylformamide,dimethylsulfoxide,ethyl acetate[1]
Slightly soluble:diethyl ether,ethanol,methyltert-butyl ether,tetrahydrofuran[1]
Acidity (pKa)−1.95 (proton addition), 4.6[2][3]
Hazards
GHS labelling:
GHS06: Toxic
Danger
H301,H315,H319,H335
P261,P264,P270,P271,P280,P301+P310,P302+P352,P304+P340,P305+P351+P338,P312,P321,P330,P332+P313,P337+P313,P362,P403+P233,P405,P501
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
Chemical compound

Pyrithione is the common name of anorganosulfur compound withmolecular formulaC
5
H
5
NOS
, chosen as an abbreviation ofpyridinethione, and found in thePersian shallot.[4] It exists as a pair oftautomers, the major form being thethione1-hydroxy-2(1H)-pyridinethione and the minor form being thethiol2-mercaptopyridineN-oxide; it crystallises in the thione form.[5] It is usually prepared from either2-bromopyridine,[1]2-chloropyridine,[6][7] or2-chloropyridineN-oxide,[8] and is commercially available as both the neutral compound and its sodiumsalt.[1] It is used to preparezinc pyrithione,[9][10] which is used primarily to treatdandruff andseborrhoeic dermatitis inmedicated shampoos,[11][12] though is also ananti-fouling agent in paints.[13]

Preparation

[edit]

The preparation of pyrithione was first reported in 1950[13] by Shaw[14] and was prepared by reaction of2-chloropyridineN-oxide withsodium hydrosulfide followed by acidification,[8] or more recently withsodium sulfide.[15] 2-chloropyridineN-oxide itself can be prepared from2-chloropyridine usingperacetic acid.[16] Another approach involves treating the same startingN-oxide withthiourea to afford pyridyl-2-isothiouronium chlorideN-oxide which undergoes base hydrolysis to pyrithione.[1][17]2-Bromopyridine can be oxidised to itsN-oxide using a suitableperacid (as per 2-chloropyridine), both approaches being analogous to that reported inOrganic Syntheses for the oxidation ofpyridine to itsN-oxide.[1][18] Asubstitution reaction using eithersodium dithionite (Na
2
S
2
O
4
) or sodium sulfide withsodium hydroxide will allow the replacement of the bromo substituent with athiolfunctional group.[1][15]

The alternative strategy is to form the mercaptan before introducing theN-oxidemoiety. 2-Mercaptopyridine was originally synthesized in 1931 by heating 2-chloropyridine withcalcium hydrosulfide,[6] an approach similar that first used to prepare pyrithione.[8] The analogous thiourea approach via a uronium salt was reported in 1958 and provides a more convenient route to 2-mercaptopyridine.[7] Oxidation to theN-oxide can then be undertaken.

Thedisulfide dipyrithione,2,2'-dithiobis(pyridine-N-oxide)

Pyrithione is found as anatural product in theAllium stipitatum plant, anAsianspecies ofonion, also known as the Persian shallot.[4] Its presence was detected using positive ionmass spectrometry using aDART ion source[19] and thedisulfidedipyrithione [de] (2,2'-disulfanediylbis(pyridine)-1,1'-dioxide) has been reported from the same species.[20] Dipyrithione can be prepared in a laboratory by oxidation of pyrithione withchlorine in the presence ofsodium hydroxide:[16]

C
5
H
4
NOSH
  +  Cl
2
  +   2 NaOH   →  ONC
5
H
4
–S–S–C
5
H
4
NO
  +   2 NaCl   +   2 H
2
O

Dipyrithione is used as afungicide andbactericide,[8] and has been reported to possess novelcytotoxic activity by inducingapoptosis.[21] However, as apoptosis only occurs in higher organisms, this mechanism isn't relevant to the antifungal and bactericidal properties of pyrithione.

Properties

[edit]
Tautomerisation of the sodium salt of pyrithione
(thione form on the left, thiolate form on the right)

Pyrithione exists as a pair of prototropes, a form oftautomerism whereby the rapid interconversion ofconstitutional isomers involves the shift of a single proton, in this case between the sulfur and oxygen atoms (shown in the infobox above).[3][22][23]

Salts of theconjugate base of pyrithione can also be considered to exhibit tautomerism by notionally associating the sodium ion with whichever heteroatom bears the negative charge of the anion (as opposed to theformal charges associated with theN-oxide); however, considering the anion alone, this could also be described as an example ofresonance.

Pyrithione is a weak acid withpKa values of −1.95 and +4.6 (thiol proton),[2][3] but is a markedly stronger acid than either of its parent compounds (pyridine-N-oxide and pyridine-2-thiol), both of which have pKa > 8.[22] It is only slightly soluble in water (2.5 g L−1) but is soluble in many organic solvents (includingbenzene,chloroform,dichloromethane,dimethylformamide,dimethylsulfoxide, andethyl acetate) and slight solubility in others (diethyl ether,ethanol,methyltert-butyl ether, andtetrahydrofuran).[1]

Pyrithione can be used as a source ofhydroxyl radical in organic synthesis[24] as it photochemically decomposes to HO and (pyridin-2-yl)sulfanyl radical.[25]

Applications

[edit]
Structures of 1:2 complexes of zinc and the conjugate base of pyrithione
Top: Structural formula of the monomer
Bottom:Ball-and-stick model of the dimer

Theconjugate base of pyrithione (pyrithionate ion) is ananion containing twodonor atoms, a sulfur atom and an oxygen atom each bearing a negativeformal charge; the nitrogen atom remains formally positively charged. The thiolate anion can be formed by reaction with sodium carbonate, andzinc pyrithione is formed whenzinc chloride is added.[10] The anion can act as either amonodentate or bidentateligand and forms a 1:2complex with a zinc(II) metal centre. Zinc pyrithione has been used since the 1930s though its preparation was not disclosed until a 1955 British patent[13] in which pyrithione was reacted directly with hydratedzinc sulfate in ethanol.[9] In itsmonomeric form, zinc pyrithione has two of the anionschelated to a zinc centre with atetrahedral geometry. In the solid state, it forms adimer in which each zinc centre adopts atrigonal bipyramidal geometry with two of the anions acting asbridging ligands coordinated through the oxygen atoms in the axial positions.[26] In solution, the dimers dissociate via scission of zinc-oxygen bonds to each bridging ligand. Further dissociation of the monomer into its constituents can occur and is undesirable as the complex is more potent in medical applications; for this reason,zinc carbonate can be added to formulations as it inhibits the monomer dissociation.[27]

Zinc pyrithione has a long history of use inmedicated shampoos to treatdandruff andseborrhoeic dermatitis[28][29][30] (dandruff can be considered a mild form of seborrheic dermatitis[12]). It exhibits bothantifungal andantimicrobial properties, inhibiting theMalassezia yeasts which promote these scalp conditions.[27] The mechanisms by which this work are the subject of ongoing study.[31][32] It can be used as anantibacterial agent againstStaphylococcus andStreptococcus infections for conditions such as athlete's foot, eczema, psoriasis, and ringworm.[13] It is known to becytotoxic againstPityrosporum ovale, especially in combination withketoconazole, which is the preferred formulation for seborrheic dermatitis.[11] Pyrithione itself inhibits membrane transport processes in fungi.[22][33]

Paints used in external environments sometimes include zinc pyrithione as a preventive against algae and mildew.[13][34]

References

[edit]
  1. ^abcdefghKnight, David W.; Hartung, Jens (15 September 2006). "1-Hydroxypyridine-2(1H)-thione".1-Hydroxypyridine-2(1H)-thione.Encyclopedia of Reagents for Organic Synthesis.John Wiley & Sons.doi:10.1002/047084289X.rh067.pub2.ISBN 0471936235.
  2. ^abRodríguez Mellado, José Miguel; Marín Galvín, Rafael; Ruiz Montoya, Mercedes (2004)."Anthropogenic Pollutants of the Environment: Electrochemical Studies on Herbicides and Fungicides". In Brillas Coso, Enric; Cabot Julia, Pere-Lluís (eds.).Trends in Electrochemistry and Corrosion at the Beginning of the 21st Century: Dedicated to Professor Dr. Josep M. Costa on the Occasion of His 70th Birthday.Edicions Universitat Barcelona. pp. 335–358.ISBN 9788447526390.Archived from the original on 2024-02-24. Retrieved2024-02-24.
  3. ^abcJones, R. Alan;Katritzky, A. R. (1960). "N-oxides and related compounds. Part XVII. The tautomerism of mercapto- and acylamino-pyridine 1-oxides".J. Chem. Soc.:2937–2942.doi:10.1039/JR9600002937.
  4. ^abEbrahimia, R.; Zamani, Z.; Kash, A. (2009). "Genetic diversity evaluation of wild Persian shallot (Allium hirtifolium Boiss.) using morphological and RAPD markers".Sci. Hortic.119 (4):345–351.Bibcode:2009ScHor.119..345E.doi:10.1016/j.scienta.2008.08.032.
  5. ^Bond, Andrew; Jones, William (1999). "1-Hydroxy-2(1H)-pyridinethione".Acta Crystallogr. C.55 (9):1536–1538.Bibcode:1999AcCrC..55.1536B.doi:10.1107/S0108270199006824.
  6. ^abRäth, C.; Binz, A.; Räth, C. (1931). "Mercaptane und Sulfosäuren des Pyridins. XII. Mitteilung über Derivate des Pyridins".Justus Liebigs Ann. Chem. (in German).487:105–119.doi:10.1002/jlac.19314870107.
  7. ^abJones, R. A.; Katritzky, A. R. (1958). "721. Tautomeric pyridines. Part I. Pyrid-2- and −4-thione".J. Chem. Soc.:3610–3613.doi:10.1039/JR9580003610.
  8. ^abcdEntry onPyrithion. at:Römpp Online. Georg Thieme Verlag, retrieved 15 December 2016.
  9. ^abUS granted 2809971, Bernstein, Jack & Losee, Kathryn A., "Heavy-metal derivatives of 1-hydroxy-2-pyridinethiones and method of preparing same", published 1957-10-15, assigned toOlin Mathieson Archived 2016-12-24 at theWayback Machine
  10. ^abUS granted 4396766, Farmer, David A. & Katz, Lawrence E., "Process for producing sodium and zinc pyrithione", published 1983-08-02, assigned toOlin Corporation [1]
  11. ^abGupta, Mrinal; Mahajan, Vikram K.; Mehta, Karaninder S.; Chauhan, Pushpinder S. (2014)."Zinc Therapy in Dermatology: A Review".Dermatol. Res. Pract.2014:1–11.doi:10.1155/2014/709152.PMC 4120804.PMID 25120566.
  12. ^abChernoff, Karen; Lin, Richie; Cohen, Steven R. (2014)."Seborrheic Dermatitis". In Rudikoff, Donald; Cohen, Steven R.; Scheinfeld, Noah (eds.).Atopic Dermatitis and Eczematous Disorders.CRC Press. pp. 275–288.ISBN 9781840766530.Archived from the original on 2024-02-24. Retrieved2024-02-24.
  13. ^abcde"Molecule of the Week: Zinc pyrithione".American Chemical Society. February 10, 2014.Archived from the original on 1 March 2021. Retrieved23 April 2020.
  14. ^Shaw, Elliott; Bernstein, Jack; Losee, Kathryn; Lott, W. A. (1950). "Analogs of Aspergillic Acid. IV. Substituted 2-Bromopyridine-N-oxides and Their Conversion to Cyclic Thiohydroxamic Acids".J. Am. Chem. Soc.72 (10):4362–4364.Bibcode:1950JAChS..72.4362S.doi:10.1021/ja01166a008.
  15. ^abCheng, Hefeng; She, Ji (1990). "14. Improved preparation of 2-mercaptopyridine-N-oxide".Zhongguo Yiyao Gongye Zazhi.21 (2):55–56.
  16. ^abUnger, Thomas A. (1996)."Dipyrithione".Pesticide Synthesis Handbook.Noyes Publications. p. 853.ISBN 9780815518532.Archived from the original on 2024-02-24. Retrieved2024-02-24.
  17. ^Thomas, K.; Jerchel, D. (1964)."The Introduction of Substituents into the Pyridine Ring". In Foerst, Wilhelm (ed.).Newer Methods of Preparative Organic Chemistry. Vol. 3. Translated by Birnbaum, Henry.Academic Press. pp. 53–110.ISBN 9780323146104.Archived from the original on 2024-02-24. Retrieved2024-02-24.
  18. ^Mosher, H. S.; Turner, L.; Carlsmith, A. (1963)."Pyridine-N-oxide".Organic Syntheses.doi:10.15227/orgsyn.033.0079;Collected Volumes, vol. 4, p. 828.
  19. ^Block, Eric; Dane, A. John; Cody, Robert B. (2011). "Crushing Garlic and Slicing Onions: Detection of Sulfenic Acids and Other Reactive Organosulfur Intermediates from Garlic and Other Alliums using Direct Analysis in Real-Time Mass Spectrometry (DART-MS)".Phosphorus Sulfur.186 (5):1085–1093.doi:10.1080/10426507.2010.507728.S2CID 98520689.
  20. ^O'Donnell, Gemma; Poeschl, Rosemarie; Zimhony, Oren; Gunaratnam, Mekala; Moreira, Joao B. C.; Neidle, Stephen; Evangelopoulos, Dimitrios; Bhakta⊥, Sanjib; Malkinson, John P.; Boshoff, Helena I.; Lenaerts, Anne; Gibbons, Simon (2009)."Bioactive Pyridine-N-oxide Disulfides fromAllium stipitatum".J. Nat. Prod.72 (3):360–365.Bibcode:2009JNAtP..72..360O.doi:10.1021/np800572r.PMC 2765505.PMID 19093848.
  21. ^Fan, Yumei; Liu, Caizhi; Huang, Yongmao; Zhang, Jie; Cai, Linlin; Wang, Shengnan; Zhang, Yongze; Duan, Xianglin; Yin, Zhimin (2013)."Dipyrithione induces cell-cycle arrest and apoptosis in four cancer cell linesin vitro and inhibits tumor growth in a mouse model".BMC Pharmacol. Toxicol.14 (54): 54.doi:10.1186/2050-6511-14-54.PMC 4015681.PMID 24139500.
  22. ^abcChandler, Carol J.; Segel, Irwin H. (1978)."Mechanism of the Antimicrobial Action of Pyrithione: Effects on Membrane Transport, ATP levels, and Protein Synthesis".Antimicrob. Agents Chemother.14 (1):60–68.doi:10.1128/AAC.14.1.60.PMC 352405.PMID 28693.
  23. ^Katritzky, Alan R.; Elguero, José (1976).The Tautomerism of Heterocycles.Academic Press.ISBN 9780120206513.
  24. ^Smith, Michael B. (2013).March's Advanced Organic Chemistry (7th ed.). Wiley. p. 246.ISBN 978-0-470-46259-1.
  25. ^DeMatteo, Matthew P.; Poole, James S.; Shi, Xiaofeng; Sachdeva, Rakesh; Hatcher, Patrick G.; Hadad, Christopher M.; Platz, Matthew S. (2005). "On the Electrophilicity of Hydroxyl Radical: A Laser Flash Photolysis and Computational Study".Journal of the American Chemical Society.127 (19):7094–7109.Bibcode:2005JAChS.127.7094D.doi:10.1021/ja043692q.ISSN 0002-7863.PMID 15884952.
  26. ^Barnett, B. L.; Kretschmar, H. C.; Hartman, F. A. (1977). "Structural characterization of bis(N-oxopyridine-2-thionato)zinc(II)".Inorg. Chem.16 (8):1834–1838.doi:10.1021/ic50174a002.
  27. ^abTrüeb, Ralph M.; Lee, Won-Soo (2014)."6.2.5 – Dandruff".Male Alopecia: Guide to Successful Management.Springer Science & Business Media. pp. 247–250.ISBN 9783319032337.Archived from the original on 2024-02-24. Retrieved2024-02-24.
  28. ^Marks, R.; Pearse, A. D.; Walker, A. P. (1985). "The Effects of a Shampoo Containing Zinc Pyrithione on the Control of Dandruff".Br. J. Dermatol.112 (4):415–422.doi:10.1111/j.1365-2133.1985.tb02314.x.PMID 3158327.S2CID 23368244.
  29. ^Faergemann, Jan (2000). "Management of Seborrheic Dermatitis and Pityriasis Versicolor".Am. J. Clin. Dermatol.1 (2):75–80.doi:10.2165/00128071-200001020-00001.PMID 11702314.S2CID 43516330.
  30. ^Bacon, Robert A.; Mizoguchi, Haruko; Schwartz, James R. (2014). "Assessing therapeutic effectiveness of scalp treatments for dandruff and seborrheic dermatitis, part 1: A reliable and relevant method based on the adherent scalp flaking score (ASFS)".J. Dermatolog. Treat.25 (3):232–236.doi:10.3109/09546634.2012.687089.PMID 22515728.S2CID 30707098.
  31. ^Chandler, Carol J.; Segel, Irwin H. (1978)."Mechanism of the Antimicrobial Action of Pyrithione: Effects on Membrane Transport, ATP Levels, and Protein Synthesis".Antimicrob. Agents Chemother.14 (1):60–68.doi:10.1128/AAC.14.1.60.PMC 352405.PMID 28693.
  32. ^Reeder, N. L.; Xu, J.; Youngquist, R. S.; Schwartz, James R.; Rust, R. C.; Saunders, C. W. (2011). "The Antifungal Mechanism of Action of Zinc Pyrithione".Br. J. Dermatol.165 (s2):9–12.doi:10.1111/j.1365-2133.2011.10571.x.PMID 21919897.S2CID 31243048.
  33. ^Ermolayeva, Elena; Sanders, Dale (1995)."Mechanism of Pyrithione-Induced Membrane Depolarization inNeurospora crassa".Appl. Environ. Microbiol.61 (9):3385–3390.Bibcode:1995ApEnM..61.3385E.doi:10.1128/AEM.61.9.3385-3390.1995.PMC 167618.PMID 7574648.
  34. ^US patent 4039312, Joseph, Marcel & Patru, Gaston, "Bacteriostatic, fungistatic and algicidal compositions, particularly for submarine paints", published 1977-08-02, assigned to Joseph, Marcel and Patru, Gaston [2]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pyrithione&oldid=1280960934"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp