Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pyrene

From Wikipedia, the free encyclopedia
Chemical compound
For other uses, seePyrene (disambiguation).
Pyrene
Structural formula of pyrene
Ball-and-stick model of the pyrene molecule
Names
Preferred IUPAC name
Pyrene[1]
Other names
Benzo[def]phenanthrene
Identifiers
3D model (JSmol)
1307225
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard100.004.481Edit this at Wikidata
84203
KEGG
RTECS number
  • UR2450000
UNII
  • InChI=1S/C16H10/c1-3-11-7-9-13-5-2-6-14-10-8-12(4-1)15(11)16(13)14/h1-10H checkY
    Key: BBEAQIROQSPTKN-UHFFFAOYSA-N checkY
  • InChI=1/C16H10/c1-3-11-7-9-13-5-2-6-14-10-8-12(4-1)15(11)16(13)14/h1-10H
    Key: BBEAQIROQSPTKN-UHFFFAOYAB
  • c1cc2cccc3c2c4c1cccc4cc3
Properties
C16H10
Molar mass202.256 g·mol−1
Appearancecolorless solid

(yellow impurities are often found at trace levels in many samples).

Density1.271 g/cm3[2]
Melting point150.62 °C (303.12 °F; 423.77 K)[2]
Boiling point394 °C (741 °F; 667 K)[2]
0.049 mg/L (0 °C)
0.139 mg/L (25 °C)
2.31 mg/L (75 °C)[3]
logP5.08[4]
Band gap2.02 eV[5]
−147·10−6 cm3/mol[6]
Structure[7]
Monoclinic
P21/a
a = 13.64 Å,b = 9.25 Å,c = 8.47 Å
α = 90°, β = 100.28°, γ = 90°
4
Thermochemistry[8]
229.7 J/(K·mol)
224.9 J·mol−1·K−1
125.5 kJ·mol−1
Enthalpy of fusionfHfus)
17.36 kJ·mol−1
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
irritant
GHS labelling:[9]
GHS07: Exclamation markGHS09: Environmental hazard
Warning
H315,H319,H335,H410
P261,P264,P271,P273,P280,P302+P352,P304+P340,P305+P351+P338,P312,P321,P332+P313,P337+P313,P362,P391,P403+P233,P405,P501
NFPA 704 (fire diamond)
Flash pointnon-flammable
Related compounds
Related PAHs
benzopyrene
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Pyrene is apolycyclic aromatic hydrocarbon (PAH) consisting of four fusedbenzene rings, resulting in a flataromatic system. The chemical formula isC16H10. This yellow-green solid is the smallest peri-fused PAH (one where the rings are fused through more than one face). Pyrene forms duringincomplete combustion of organic compounds.[10]

Occurrence and properties

[edit]

Pyrene was first isolated fromcoal tar, where it occurs up to 2% by weight. As a peri-fused PAH, pyrene is much moreresonance-stabilized than its five-member-ring containing isomerfluoranthene. Therefore, it is produced in a wide range of combustion conditions. For example, automobiles produce about 1 μg/km.[11]

Reactions

[edit]

Oxidation withchromate affords perinaphthenone and then naphthalene-1,4,5,8-tetracarboxylic acid. Pyrene undergoes a series ofhydrogenation reactions and is susceptible to halogenation,Diels-Alder additions, and nitration, all with varying degrees of selectivity.[11] Bromination occurs at one of the 3-positions.[12]

Reduction with sodium affords the radical anion. From this anion, a variety of pi-arene complexes can be prepared.[13]

Photophysics

[edit]

Pyrene and its derivatives are used commercially to makedyes and dye precursors, for examplepyranine and naphthalene-1,4,5,8-tetracarboxylic acid. It has strong absorbance in UV-Vis in three sharp bands at 330 nm in DCM. The emission is close to the absorption, but moving at 375 nm.[14] The morphology of the signals change with the solvent. Its derivatives are also valuable molecular probes viafluorescence spectroscopy, having a high quantum yield and lifetime (0.65 and 410 nanoseconds, respectively, inethanol at 293 K). Pyrene was the first molecule for whichexcimer behavior was discovered.[15] Such excimer appears around 450 nm.Theodor Förster reported this in 1954.[16]

Applications

[edit]
STM image of self-assembled Br4Py molecules on Au(111) surface (top) and its model (bottom; pink spheres are Br atoms).[17]

Pyrene's fluorescenceemission spectrum is very sensitive to solvent polarity, so pyrene has been used as a probe to determine solvent environments. This is due to its excited state having a different, non-planar structure than the ground state. Certain emission bands are unaffected, but others vary in intensity due to the strength of interaction with a solvent.

Diagram showing the numbering and ring fusion locations of pyrene according toIUPAC nomenclature of organic chemistry.

Pyrenes are strong electron donor materials and can be combined with several materials in order to make electron donor-acceptor systems which can be used in energy conversion and light harvesting applications.[14]

Safety and environmental factors

[edit]

Although it is not as problematic asbenzopyrene,animal studies have shown pyrene istoxic to thekidneys andliver. It is now known that pyrene affects several living functions in fish and algae.[18][19][20][21]

Its biodegradation has been heavily examined. The process commences with dihydroxylation at each of two kinds of CH=CH linkages.[22] Experiments in pigs show that urinary1-hydroxypyrene is a metabolite of pyrene, when given orally.[23]

See also

[edit]

References

[edit]
  1. ^International Union of Pure and Applied Chemistry (2014).Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013.The Royal Society of Chemistry. p. 206.doi:10.1039/9781849733069.ISBN 978-0-85404-182-4.
  2. ^abcHaynes, p. 3.472
  3. ^Haynes, p. 5.162
  4. ^Haynes, p. 5.176
  5. ^Haynes, p. 12.96
  6. ^Haynes, p. 3.579
  7. ^Camerman, A.; Trotter, J. (1965)."The crystal and molecular structure of pyrene".Acta Crystallographica.18 (4):636–643.doi:10.1107/S0365110X65001494.
  8. ^Haynes, pp. 5.34, 6.161
  9. ^GHS:PubChem
  10. ^Figueira-Duarte, Teresa M.; Müllen, Klaus (2011). "Pyrene-Based Materials for Organic Electronics".Chemical Reviews.111 (11):7260–7314.doi:10.1021/cr100428a.PMID 21740071.
  11. ^abSenkan, Selim and Castaldi, Marco (2003) "Combustion" inUllmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim.
  12. ^Gumprecht, W. H. (1968). "3-Bromopyrene".Org. Synth.48: 30.doi:10.15227/orgsyn.048.0030.
  13. ^Kucera, Benjamin E.; Jilek, Robert E.; Brennessel, William W.; Ellis, John E. (2014). "Bis(pyrene)metal complexes of vanadium, niobium and titanium: Isolable homoleptic pyrene complexes of transition metals".Acta Crystallographica Section C: Structural Chemistry.70 (8):749–753.doi:10.1107/S2053229614015290.PMID 25093352.
  14. ^abTagmatarchis, Nikos; Ewels, Christopher P.; Bittencourt, Carla; Arenal, Raul; Pelaez-Fernandez, Mario; Sayed-Ahmad-Baraza, Yuman; Canton-Vitoria, Ruben (2017-06-05)."Functionalization of MoS 2 with 1,2-dithiolanes: toward donor-acceptor nanohybrids for energy conversion".npj 2D Materials and Applications.1 (1): 13.doi:10.1038/s41699-017-0012-8.hdl:10261/367520.ISSN 2397-7132.
  15. ^Van Dyke, David A.; Pryor, Brian A.; Smith, Philip G.; Topp, Michael R. (May 1998). "Nanosecond Time-Resolved Fluorescence Spectroscopy in the Physical Chemistry Laboratory: Formation of the Pyrene Excimer in Solution".Journal of Chemical Education.75 (5): 615.Bibcode:1998JChEd..75..615V.doi:10.1021/ed075p615.
  16. ^Förster, Th.; Kasper, K. (June 1954). "Ein Konzentrationsumschlag der Fluoreszenz".Zeitschrift für Physikalische Chemie.1 (5_6):275–277.doi:10.1524/zpch.1954.1.5_6.275.
  17. ^Pham, Tuan Anh; Song, Fei; Nguyen, Manh-Thuong; Stöhr, Meike (2014)."Self-assembly of pyrene derivatives on Au(111): Substituent effects on intermolecular interactions".Chem. Commun.50 (91):14089–92.doi:10.1039/C4CC02753A.PMID 24905327.
  18. ^Oliveira, M.; Ribeiro, A.; Hylland, K.; Guilhermino, L. (2013). "Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae)".Ecological Indicators.34:641–647.doi:10.1016/j.ecolind.2013.06.019.
  19. ^Oliveira, M.; Gravato, C.; Guilhermino, L. (2012). "Acute toxic effects of pyrene on Pomatoschistus microps (Teleostei, Gobiidae): Mortality, biomarkers and swimming performance".Ecological Indicators.19:206–214.doi:10.1016/j.ecolind.2011.08.006.
  20. ^Oliveira, M.; Ribeiro, A.; Guilhermino, L. (2012). "Effects of exposure to microplastics and PAHs on microalgae Rhodomonas baltica and Tetraselmis chuii".Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology.163:S19–S20.doi:10.1016/j.cbpa.2012.05.062.
  21. ^Oliveira, M.; Ribeiro, A.; Guilhermino, L. (2012). "Effects of short-term exposure to microplastics and pyrene on Pomatoschistus microps (Teleostei, Gobiidae)".Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology.163: S20.doi:10.1016/j.cbpa.2012.05.063.
  22. ^Seo, Jong-Su; Keum, Young-Soo; Li, Qing (2009)."Bacterial Degradation of Aromatic Compounds".International Journal of Environmental Research and Public Health.6 (1):278–309.doi:10.3390/ijerph6010278.PMC 2672333.PMID 19440284.
  23. ^Keimig, S. D.; Kirby, K. W.; Morgan, D. P.; Keiser, J. E.; Hubert, T. D. (1983). "Identification of 1-hydroxypyrene as a major metabolite of pyrene in pig urine".Xenobiotica.13 (7):415–20.doi:10.3109/00498258309052279.PMID 6659544.

Cited sources

[edit]

Further reading

[edit]
  • Birks, J. B. (1969).Photophysics of Aromatic Molecules. London: Wiley.
  • Valeur, B. (2002).Molecular Fluorescence: Principles and Applications. New York: Wiley-VCH.
  • Birks, J. B. (1975). "Excimers".Reports on Progress in Physics.38 (8):903–974.Bibcode:1975RPPh...38..903B.doi:10.1088/0034-4885/38/8/001.ISSN 0034-4885.S2CID 240065177.
  • Fetzer, J. C. (2000).The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons. New York: Wiley.
Saturated
aliphatic
hydrocarbons
Alkanes
CnH2n + 2
Linear alkanes
Branched alkanes
Cycloalkanes
Alkylcycloalkanes
Bicycloalkanes
Polycycloalkanes
Other
Unsaturated
aliphatic
hydrocarbons
Alkenes
CnH2n
Linear alkenes
Branched alkenes
Alkynes
CnH2n − 2
Linear alkynes
Branched alkynes
Cycloalkenes
Alkylcycloalkenes
Bicycloalkenes
Cycloalkynes
Dienes
Other
Aromatic
hydrocarbons
PAHs
Acenes
Other
Alkylbenzenes
C2-Benzenes
Xylenes
Other
C3-Benzenes
Trimethylbenzenes
Other
C4-Benzenes
Cymenes
Tetramethylbenzenes
Other
Other
Vinylbenzenes
Other
Other
2 rings
3 rings
4 rings
5 rings
6 rings
7+ rings
General classes
Molecules
Diatomic








Triatomic
Four
atoms
Five
atoms
Six
atoms
Seven
atoms
Eight
atoms
Nine
atoms
Ten
atoms
or more
Deuterated
molecules
Unconfirmed
Related
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pyrene&oldid=1279880818"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp