Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Generalized inverse

From Wikipedia, the free encyclopedia
(Redirected fromPseudoinverse)
Algebraic element satisfying some of the criteria of an inverse
"Pseudoinverse" redirects here. For the Moore–Penrose inverse, sometimes referred to as "the pseudoinverse", seeMoore–Penrose inverse.

Inmathematics, and in particular,algebra, ageneralized inverse (or,g-inverse) of an elementx is an elementy that has some properties of aninverse element but not necessarily all of them. The purpose of constructing a generalized inverse of a matrix is to obtain a matrix that can serve as an inverse in some sense for a wider class of matrices thaninvertible matrices. Generalized inverses can be defined in anymathematical structure that involvesassociative multiplication, that is, in asemigroup. This article describes generalized inverses of amatrixA{\displaystyle A}.

A matrixAgRn×m{\displaystyle A^{\mathrm {g} }\in \mathbb {R} ^{n\times m}} is a generalized inverse of a matrixARm×n{\displaystyle A\in \mathbb {R} ^{m\times n}} ifAAgA=A.{\displaystyle AA^{\mathrm {g} }A=A.}[1][2][3] A generalized inverse exists for an arbitrary matrix, and when a matrix has aregular inverse, this inverse is its unique generalized inverse.[1]

Motivation

[edit]

Consider thelinear system

Ax=y{\displaystyle Ax=y}

whereA{\displaystyle A} is anm×n{\displaystyle m\times n} matrix andyC(A),{\displaystyle y\in {\mathcal {C}}(A),} thecolumn space ofA{\displaystyle A}. Ifm=n{\displaystyle m=n} andA{\displaystyle A} isnonsingular thenx=A1y{\displaystyle x=A^{-1}y} will be the solution of the system. Note that, ifA{\displaystyle A} is nonsingular, then

AA1A=A.{\displaystyle AA^{-1}A=A.}

Now supposeA{\displaystyle A} is rectangular (mn{\displaystyle m\neq n}), or square and singular. Then we need a right candidateG{\displaystyle G} of ordern×m{\displaystyle n\times m} such that for allyC(A),{\displaystyle y\in {\mathcal {C}}(A),}

AGy=y.{\displaystyle AGy=y.}[4]

That is,x=Gy{\displaystyle x=Gy} is a solution of the linear systemAx=y{\displaystyle Ax=y}. Equivalently, we need a matrixG{\displaystyle G} of ordern×m{\displaystyle n\times m} such that

AGA=A.{\displaystyle AGA=A.}

Hence we can define thegeneralized inverse as follows: Given anm×n{\displaystyle m\times n} matrixA{\displaystyle A}, ann×m{\displaystyle n\times m} matrixG{\displaystyle G} is said to be a generalized inverse ofA{\displaystyle A} ifAGA=A.{\displaystyle AGA=A.}[1][2][3] The matrixA1{\displaystyle A^{-1}} has been termed aregular inverse ofA{\displaystyle A} by some authors.[5]

Types

[edit]

Important types of generalized inverse include:

Some generalized inverses are defined and classified based on the Penrose conditions:

  1. AAgA=A{\displaystyle AA^{\mathrm {g} }A=A}
  2. AgAAg=Ag{\displaystyle A^{\mathrm {g} }AA^{\mathrm {g} }=A^{\mathrm {g} }}
  3. (AAg)=AAg{\displaystyle (AA^{\mathrm {g} })^{*}=AA^{\mathrm {g} }}
  4. (AgA)=AgA,{\displaystyle (A^{\mathrm {g} }A)^{*}=A^{\mathrm {g} }A,}

where{\displaystyle {}^{*}} denotes conjugate transpose. IfAg{\displaystyle A^{\mathrm {g} }} satisfies the first condition, then it is ageneralized inverse ofA{\displaystyle A}. If it satisfies the first two conditions, then it is areflexive generalized inverse ofA{\displaystyle A}. If it satisfies all four conditions, then it is thepseudoinverse ofA{\displaystyle A}, which is denoted byA+{\displaystyle A^{+}} and also known as theMoore–Penrose inverse, after the pioneering works byE. H. Moore andRoger Penrose.[2][7][8][9][10][11] It is convenient to define anI{\displaystyle I}-inverse ofA{\displaystyle A} as an inverse that satisfies the subsetI{1,2,3,4}{\displaystyle I\subset \{1,2,3,4\}} of the Penrose conditions listed above. Relations, such asA(1,4)AA(1,3)=A+{\displaystyle A^{(1,4)}AA^{(1,3)}=A^{+}}, can be established between these different classes ofI{\displaystyle I}-inverses.[1]

WhenA{\displaystyle A} is non-singular, any generalized inverseAg=A1{\displaystyle A^{\mathrm {g} }=A^{-1}} and is therefore unique. For a singularA{\displaystyle A}, some generalised inverses, such as the Drazin inverse and the Moore–Penrose inverse, are unique, while others are not necessarily uniquely defined.

Examples

[edit]

Reflexive generalized inverse

[edit]

Let

A=[123456789],G=[5323043130000].{\displaystyle A={\begin{bmatrix}1&2&3\\4&5&6\\7&8&9\end{bmatrix}},\quad G={\begin{bmatrix}-{\frac {5}{3}}&{\frac {2}{3}}&0\\[4pt]{\frac {4}{3}}&-{\frac {1}{3}}&0\\[4pt]0&0&0\end{bmatrix}}.}

Sincedet(A)=0{\displaystyle \det(A)=0},A{\displaystyle A} is singular and has no regular inverse. However,A{\displaystyle A} andG{\displaystyle G} satisfy Penrose conditions (1) and (2), but not (3) or (4). Hence,G{\displaystyle G} is a reflexive generalized inverse ofA{\displaystyle A}.

One-sided inverse

[edit]

Let

A=[123456],AR1=[17188182182181318418].{\displaystyle A={\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}},\quad A_{\mathrm {R} }^{-1}={\begin{bmatrix}-{\frac {17}{18}}&{\frac {8}{18}}\\[4pt]-{\frac {2}{18}}&{\frac {2}{18}}\\[4pt]{\frac {13}{18}}&-{\frac {4}{18}}\end{bmatrix}}.}

SinceA{\displaystyle A} is not square,A{\displaystyle A} has no regular inverse. However,AR1{\displaystyle A_{\mathrm {R} }^{-1}} is a right inverse ofA{\displaystyle A}. The matrixA{\displaystyle A} has no left inverse.

Inverse of other semigroups (or rings)

[edit]

The elementb is a generalized inverse of an elementa if and only ifaba=a{\displaystyle a\cdot b\cdot a=a}, in any semigroup (orring, since themultiplication function in any ring is a semigroup).

The generalized inverses of the element 3 in the ringZ/12Z{\displaystyle \mathbb {Z} /12\mathbb {Z} } are 3, 7, and 11, since in the ringZ/12Z{\displaystyle \mathbb {Z} /12\mathbb {Z} }:

333=3{\displaystyle 3\cdot 3\cdot 3=3}
373=3{\displaystyle 3\cdot 7\cdot 3=3}
3113=3{\displaystyle 3\cdot 11\cdot 3=3}

The generalized inverses of the element 4 in the ringZ/12Z{\displaystyle \mathbb {Z} /12\mathbb {Z} } are 1, 4, 7, and 10, since in the ringZ/12Z{\displaystyle \mathbb {Z} /12\mathbb {Z} }:

414=4{\displaystyle 4\cdot 1\cdot 4=4}
444=4{\displaystyle 4\cdot 4\cdot 4=4}
474=4{\displaystyle 4\cdot 7\cdot 4=4}
4104=4{\displaystyle 4\cdot 10\cdot 4=4}

If an elementa in a semigroup (or ring) has an inverse, the inverse must be the only generalized inverse of this element, like the elements 1, 5, 7, and 11 in the ringZ/12Z{\displaystyle \mathbb {Z} /12\mathbb {Z} }.

In the ringZ/12Z{\displaystyle \mathbb {Z} /12\mathbb {Z} }, any element is a generalized inverse of 0, however, 2 has no generalized inverse, since there is nob inZ/12Z{\displaystyle \mathbb {Z} /12\mathbb {Z} } such that2b2=2{\displaystyle 2\cdot b\cdot 2=2}.

Construction

[edit]

The following characterizations are easy to verify:

Uses

[edit]

Any generalized inverse can be used to determine whether asystem of linear equations has any solutions, and if so to give all of them. If any solutions exist for then ×m linear system

Ax=b{\displaystyle Ax=b},

with vectorx{\displaystyle x} of unknowns and vectorb{\displaystyle b} of constants, all solutions are given by

x=Agb+[IAgA]w{\displaystyle x=A^{\mathrm {g} }b+\left[I-A^{\mathrm {g} }A\right]w},

parametric on the arbitrary vectorw{\displaystyle w}, whereAg{\displaystyle A^{\mathrm {g} }} is any generalized inverse ofA{\displaystyle A}. Solutions exist if and only ifAgb{\displaystyle A^{\mathrm {g} }b} is a solution, that is, if and only ifAAgb=b{\displaystyle AA^{\mathrm {g} }b=b}. IfA has full column rank, the bracketed expression in this equation is the zero matrix and so the solution is unique.[12]

Generalized inverses of matrices

[edit]

The generalized inverses of matrices can be characterized as follows. LetARm×n{\displaystyle A\in \mathbb {R} ^{m\times n}}, and

A=U[Σ1000]VT{\displaystyle A=U{\begin{bmatrix}\Sigma _{1}&0\\0&0\end{bmatrix}}V^{\operatorname {T} }}

be itssingular-value decomposition. Then for any generalized inverseAg{\displaystyle A^{g}}, there exist[1] matricesX{\displaystyle X},Y{\displaystyle Y}, andZ{\displaystyle Z} such that

Ag=V[Σ11XYZ]UT.{\displaystyle A^{g}=V{\begin{bmatrix}\Sigma _{1}^{-1}&X\\Y&Z\end{bmatrix}}U^{\operatorname {T} }.}

Conversely, any choice ofX{\displaystyle X},Y{\displaystyle Y}, andZ{\displaystyle Z} for matrix of this form is a generalized inverse ofA{\displaystyle A}.[1] The{1,2}{\displaystyle \{1,2\}}-inverses are exactly those for whichZ=YΣ1X{\displaystyle Z=Y\Sigma _{1}X}, the{1,3}{\displaystyle \{1,3\}}-inverses are exactly those for whichX=0{\displaystyle X=0}, and the{1,4}{\displaystyle \{1,4\}}-inverses are exactly those for whichY=0{\displaystyle Y=0}. In particular, the pseudoinverse is given byX=Y=Z=0{\displaystyle X=Y=Z=0}:

A+=V[Σ11000]UT.{\displaystyle A^{+}=V{\begin{bmatrix}\Sigma _{1}^{-1}&0\\0&0\end{bmatrix}}U^{\operatorname {T} }.}

Transformation consistency properties

[edit]

In practical applications it is necessary to identify the class of matrix transformations that must be preserved by a generalized inverse. For example, the Moore–Penrose inverse,A+,{\displaystyle A^{+},} satisfies the following definition of consistency with respect to transformations involving unitary matricesU andV:

(UAV)+=VA+U{\displaystyle (UAV)^{+}=V^{*}A^{+}U^{*}}.

The Drazin inverse,AD{\displaystyle A^{\mathrm {D} }} satisfies the following definition of consistency with respect to similarity transformations involving a nonsingular matrixS:

(SAS1)D=SADS1{\displaystyle \left(SAS^{-1}\right)^{\mathrm {D} }=SA^{\mathrm {D} }S^{-1}}.

The unit-consistent (UC) inverse,[13]AU,{\displaystyle A^{\mathrm {U} },} satisfies the following definition of consistency with respect to transformations involving nonsingular diagonal matricesD andE:

(DAE)U=E1AUD1{\displaystyle (DAE)^{\mathrm {U} }=E^{-1}A^{\mathrm {U} }D^{-1}}.

The fact that the Moore–Penrose inverse provides consistency with respect to rotations (which are orthonormal transformations) explains its widespread use in physics and other applications in which Euclidean distances must be preserved. The UC inverse, by contrast, is applicable when system behavior is expected to be invariant with respect to the choice of units on different state variables, e.g., miles versus kilometers.

See also

[edit]

Citations

[edit]
  1. ^abcdefBen-Israel & Greville 2003, pp. 2, 7
  2. ^abcNakamura 1991, pp. 41–42
  3. ^abRao & Mitra 1971, pp. vii, 20
  4. ^Rao & Mitra 1971, p. 24
  5. ^Rao & Mitra 1971, pp. 19–20
  6. ^abcRao & Mitra 1971, p. 19
  7. ^Rao & Mitra 1971, pp. 20, 28, 50–51
  8. ^Ben-Israel & Greville 2003, p. 7
  9. ^Campbell & Meyer 1991, p. 10
  10. ^James 1978, p. 114
  11. ^Nakamura 1991, p. 42
  12. ^James 1978, pp. 109–110
  13. ^Uhlmann 2018

Sources

[edit]

Textbook

[edit]

Publication

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Generalized_inverse&oldid=1247701621"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp