Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Proximal operator

From Wikipedia, the free encyclopedia
Function in mathematical optimization

Inmathematical optimization, theproximal operator is anoperator associated with a proper,[note 1]lower semi-continuousconvex functionf{\displaystyle f} from aHilbert spaceX{\displaystyle {\mathcal {X}}}to[,+]{\displaystyle [-\infty ,+\infty ]}, and is defined by:[1]

proxf(v)=argminxX(f(x)+12xvX2).{\displaystyle \operatorname {prox} _{f}(v)=\arg \min _{x\in {\mathcal {X}}}\left(f(x)+{\frac {1}{2}}\|x-v\|_{\mathcal {X}}^{2}\right).}

For any function in this class, the minimizer of the right-hand side above is unique, hence making the proximal operator well-defined. The proximal operator is used in proximal gradient methods, which is frequently used in optimization algorithms associated with non-differentiable optimization problems such astotal variation denoising.

Properties

[edit]

Theprox{\displaystyle {\text{prox}}} of a proper, lower semi-continuous convex functionf{\displaystyle f} enjoys several useful properties for optimization.

proxιC(x)=argminy{12xy22if yC+if yC=argminyC12xy22{\displaystyle {\begin{aligned}\operatorname {prox} _{\iota _{C}}(x)&=\operatorname {argmin} \limits _{y}{\begin{cases}{\frac {1}{2}}\left\|x-y\right\|_{2}^{2}&{\text{if }}y\in C\\+\infty &{\text{if }}y\notin C\end{cases}}\\&=\operatorname {argmin} \limits _{y\in C}{\frac {1}{2}}\left\|x-y\right\|_{2}^{2}\end{aligned}}}
showing that the proximity operator is indeed a generalisation of the projection operator.
f(x)={uRNyRN,(yx)Tu+f(x)f(y)}{\displaystyle \partial f(x)=\{u\in \mathbb {R} ^{N}\mid \forall y\in \mathbb {R} ^{N},(y-x)^{\mathrm {T} }u+f(x)\leq f(y)\}} In particular, Iff{\displaystyle f} is differentiable then the above equation reduces top=proxf(x)xp=f(p){\displaystyle p=\operatorname {prox} _{f}(x)\Leftrightarrow x-p=\nabla f(p)}.

Notes

[edit]
  1. ^An(extended) real-valued functionf on aHilbert space is said to beproper if it is not identically equal to+{\displaystyle +\infty }, and{\displaystyle -\infty } is not in its image.

References

[edit]
  1. ^Neal Parikh and Stephen Boyd (2013)."Proximal Algorithms"(PDF).Foundations and Trends in Optimization.1 (3):123–231. Retrieved2019-01-29.
  2. ^Bauschke, Heinz H.; Combettes, Patrick L. (2017).Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. New York: Springer.doi:10.1007/978-3-319-48311-5.ISBN 978-3-319-48310-8.


See also

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Proximal_operator&oldid=1260909513"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp