Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Proth prime

From Wikipedia, the free encyclopedia
Prime number of the form k*(2^n)+1
Proth prime
Named afterFrançois Proth
Publication year1878
Author of publicationProth, Francois
No. of known terms4304683178 below 272[1]
Conjecturedno. of termsInfinite
Subsequence ofProth numbers,prime numbers
Formulak × 2n + 1
First terms3, 5, 13, 17, 41, 97, 113
Largest known term10223 × 231172165 + 1 (as of December 2019)
OEIS index
  • A080076
  • Proth primes: primes of the formk*2^m + 1 with oddk < 2^m,m ≥ 1

AProth number is anatural numberN of the formN=k×2n+1{\displaystyle N=k\times 2^{n}+1} wherek andn are positiveintegers,k isodd and2n>k{\displaystyle 2^{n}>k}. AProth prime is a Proth number that isprime. They are named after the French mathematicianFrançois Proth.[2] The first few Proth primes are

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (OEISA080076).

It is still an open question whether an infinite number of Proth primes exist. It was shown in 2022 that the reciprocal sum of Proth primes converges to a real number near 0.747392479, substantially less than the value of 1.093322456 for the reciprocal sum of Proth numbers.[1]

The primality of Proth numbers can be tested more easily than many other numbers of similar magnitude.

Definition

[edit]

A Proth number takes the formN=k×2n+1{\displaystyle N=k\times 2^{n}+1} wherek andn are positive integers,k{\displaystyle k} is odd and2n>k{\displaystyle 2^{n}>k}. A Proth prime is a Proth number that is prime.[2][3] Without the condition that2n>k{\displaystyle 2^{n}>k}, all odd integers larger than 1 would be Proth numbers.[4]

Primality testing

[edit]
See also:Proth's theorem

The primality of a Proth number can be tested withProth's theorem, which states that a Proth numberp{\displaystyle p} is prime if and only if there exists an integera{\displaystyle a} for which

ap121(modp).{\displaystyle a^{\frac {p-1}{2}}\equiv -1{\pmod {p}}.}[3][5]

This theorem can be used as a probabilistic test of primality, by checking for many random choices ofa{\displaystyle a} whetherap121(modp).{\displaystyle a^{\frac {p-1}{2}}\equiv -1{\pmod {p}}.} If this fails to hold for several randoma{\displaystyle a}, then it is very likely that the numberp{\displaystyle p} iscomposite.[citation needed]This test is aLas Vegas algorithm: it never returns afalse positive but can return afalse negative; in other words, it never reports a composite number as "probably prime" but can report a prime number as "possibly composite".

In 2008, Sze created adeterministic algorithm that runs in at mostO~((klogk+logN)(logN)2){\displaystyle {\tilde {O}}((k\log k+\log N)(\log N)^{2})} time, where Õ is thesoft-O notation. For typical searches for Proth primes, usuallyk{\displaystyle k} is either fixed (e.g. 321 Prime Search or Sierpinski Problem) or of orderO(logN){\displaystyle O(\log N)} (e.g. Cullen prime search). In these cases algorithm runs in at mostO~((logN)3){\displaystyle {\tilde {O}}((\log N)^{3})}, orO((logN)3+ϵ){\displaystyle O((\log N)^{3+\epsilon })} time for allϵ>0{\displaystyle \epsilon >0}. There is also an algorithm that runs inO~((logN)24/7){\displaystyle {\tilde {O}}((\log N)^{24/7})} time.[2][6]

Fermat numbers are a special case of Proth numbers, whereink=1. In such a scenarioPépin's test proves that only basea=3 need to be checked to deterministically verify or falsify the primality of a Fermat number.

Large primes

[edit]

As of 2022[update], the largest known Proth prime is10223×231172165+1{\displaystyle 10223\times 2^{31172165}+1}. It is 9,383,761 digits long.[7] It was found by Szabolcs Peter in thePrimeGrid volunteer computing project which announced it on 6 November 2016.[8] It is also the third largest known non-Mersenne prime.[9]

The projectSeventeen or Bust, searching for Proth primes with a certaint{\displaystyle t} to prove that 78557 is the smallestSierpinski number (Sierpinski problem), has found 11 large Proth primes by 2007. Similar resolutions to theprime Sierpiński problem andextended Sierpiński problem have yielded several more numbers.

Since divisors ofFermat numbersFn=22n+1{\displaystyle F_{n}=2^{2^{n}}+1} are always of the formk×2n+2+1{\displaystyle k\times 2^{n+2}+1}, it is customary to determine if a new Proth prime divides a Fermat number.[10]

As of January 2025,PrimeGrid is the leading computing project for searching for Proth primes. Its main projects include:

k ∈ {21181, 22699, 24737, 55459, 67607, 79309, 79817, 91549, 99739, 131179, 152267, 156511, 163187, 200749, 209611, 222113, 225931, 227723, 229673, 237019, 238411}

As of June 2023, the largest Proth primes discovered are:[11]

rankprimedigitswhenCommentsDiscoverer (Project)References
110223 × 231172165 + 1938376131 Oct 2016Szabolcs Péter (Sierpinski Problem)[12]
2202705 × 221320516 + 164181211 Dec 2021Pavel Atnashev (Extended Sierpinski Problem)[13]
381 × 220498148 + 1617056013 Jul 2023Generalized FermatF2(3 × 25124537)Ryan Propper (LLR)[11]
47 × 220267500 + 1610112721 Jul 2022DividesF20267499(12)Ryan Propper (LLR)[11][14]
5168451 × 219375200 + 1583252217 Sep 2017Ben Maloney (Prime Sierpinski Problem)[15]
67 × 218233956 + 154889691 Oct 2020DividesFermatF18233954 andF18233952(7)Ryan Propper[16][14]
713 × 216828072 + 1506575611 Oct 2023Ryan Propper[11]
83 × 216408818 + 1493954728 Oct 2020DividesF16408814(3),F16408817(5), andF16408815(8)James Brown (PrimeGrid)[14]
911 × 215502315 + 146666638 Jan 2023DividesF15502313(10)Ryan Propper[14]
1037 × 215474010 + 146581438 Nov 2022Ryan Propper[14]
11(27658613 + 1) × 27658614 + 1461094531 Jul 2020Gaussian Mersenne normRyan Propper and Serge Batalov[11]
1213 × 215294536 + 1460411630 Sep 2023Ryan Propper[11]
1337 × 214166940 + 1426467624 Jun 2022Ryan Propper[11]
1499739 × 214019102 + 1422017624 Dec 2019Brian Niegocki (Extended Sierpinski Problem)[17]
15404849 × 213764867 + 1414364410 Mar 2021Generalized Cullen with base 131072Ryan Propper and Serge Batalov[11]
1625 × 213719266 + 1412991221 Sep 2022F1(5 × 26859633)Ryan Propper[11]
1781 × 213708272 + 1412660311 Oct 2022F2(3 × 23427068)Ryan Propper[11]
1881 × 213470584 + 140550529 Oct 2022F2(3 × 23367646)Ryan Propper[11]
199 × 213334487 + 1401408231 Mar 2020DividesF13334485(3),F13334486(7), andF13334484(8)Ryan Propper[14]
2019249 × 213018586 + 1391899026 Mar 2007Konstantin Agafonov (Seventeen or Bust)[12]

Proth prime of the second kind

[edit]

AProth number of the second kind is anatural numberN of the formN=k×2n1{\displaystyle N=k\times 2^{n}-1} wherek andn are positiveintegers,k isodd and2n>k{\displaystyle 2^{n}>k}. AProth prime of the second kind is a Proth number of the second kind that isprime. The first few Proth primes of the second kind are

3, 7, 11, 23, 31, 47, 79, 127, 191, 223, 239, 383, 479, 607, 863, 991, 1087, 1151, 1279, 1471, 1663, 2111, 2239, 2687, 2879, 3391, 3583, 3967, 5119, 5503, 6143, 6271, 6911, 7039, 8191, 8447, 8831, 9343 (OEISA112715).

The largest Proth primes of the second kind can be primality testing use theLucas–Lehmer–Riesel test.

As of January 2025,PrimeGrid is the leading computing project for searching for Proth primes of the second kind. Its main projects include:

k ∈ {23669, 31859, 38473, 46663, 67117, 74699, 81041, 121889, 129007, 143047, 161669, 206231, 215443, 226153, 234343, 245561, 250027, 315929, 319511, 324011, 325123, 327671, 336839, 342847, 344759, 362609, 363343, 364903, 365159, 368411, 371893, 384539, 386801, 397027, 409753, 444637, 470173, 474491, 477583, 485557, 494743 }

Uses

[edit]

Small Proth primes (less than 10200) have been used in constructing prime ladders, sequences of prime numbers such that each term is "close" (within about 1011) to the previous one. Such ladders have been used to empirically verify prime-relatedconjectures. For example,Goldbach's weak conjecture was verified in 2008 up to 8.875 × 1030 using prime ladders constructed from Proth primes.[18] (The conjecture was later proved byHarald Helfgott.[19][20][better source needed])

Also, Proth primes can optimizeden Boer reduction between theDiffie–Hellman problem and theDiscrete logarithm problem. The prime number 55 × 2286 + 1 has been used in this way.[21]

As Proth primes have simplebinary representations, they have also been used in fast modular reduction without the need for pre-computation, for example byMicrosoft.[22]

References

[edit]
  1. ^abBorsos, Bertalan; Kovács, Attila; Tihanyi, Norbert (2022), "Tight upper and lower bounds for the reciprocal sum of Proth primes",Ramanujan Journal,59, Springer:181–198,doi:10.1007/s11139-021-00536-2,hdl:10831/83020,S2CID 246024152
  2. ^abcSze, Tsz-Wo (2008). "Deterministic Primality Proving on Proth Numbers".arXiv:0812.2596 [math.NT].
  3. ^abWeisstein, Eric W."Proth Prime".mathworld.wolfram.com. Retrieved2019-12-06.
  4. ^Weisstein, Eric W."Proth Number".mathworld.wolfram.com. Retrieved2019-12-07.
  5. ^Weisstein, Eric W."Proth's Theorem".MathWorld.
  6. ^Konyagin, Sergei; Pomerance, Carl (2013), Graham, Ronald L.; Nešetřil, Jaroslav; Butler, Steve (eds.), "On Primes Recognizable in Deterministic Polynomial Time",The Mathematics of Paul Erdős I, Springer New York, pp. 159–186,doi:10.1007/978-1-4614-7258-2_12,ISBN 978-1-4614-7258-2
  7. ^Caldwell, Chris."The Top Twenty: Proth". ThePrime Pages.
  8. ^Van Zimmerman (30 Nov 2016) [9 Nov 2016]."World Record Colbert Number discovered!".PrimeGrid.
  9. ^Caldwell, Chris."The Top Twenty: Largest Known Primes". ThePrime Pages.
  10. ^"The Prime Glossary: Fermat divisor".primes.utm.edu. Retrieved14 November 2021.
  11. ^abcdefghijkCaldwell, Chris K."The top twenty: Proth".The Top Twenty. Retrieved6 December 2019.
  12. ^abGoetz, Michael (27 February 2018)."Seventeen or Bust".PrimeGrid. Retrieved6 Dec 2019.
  13. ^"PrimeGrid's Extended Sierpinski Problem Prime Search"(PDF).primegrid.com.PrimeGrid. Retrieved28 December 2021.
  14. ^abcdef"New GFN factors".www.prothsearch.com. Retrieved14 November 2021.
  15. ^"Official discovery of the prime number 168451×219375200+1"(PDF).PrimeGrid. Retrieved6 Dec 2019.
  16. ^"Fermat factoring status".www.prothsearch.com. Retrieved14 November 2021.
  17. ^"Official discovery of the prime number 99739×214019102+1"(PDF).PrimeGrid. 24 December 2019. Retrieved14 November 2021.
  18. ^Helfgott, H. A.; Platt, David J. (2013). "Numerical Verification of the Ternary Goldbach Conjecture up to 8.875e30".arXiv:1305.3062 [math.NT].
  19. ^Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true".arXiv:1312.7748 [math.NT].
  20. ^"Harald Andrés Helfgott".Alexander von Humboldt-Professur. Retrieved2019-12-08.
  21. ^Brown, Daniel R. L. (24 Feb 2015)."CM55: special prime-field elliptic curves almost optimizing den Boer's reduction between Diffie–Hellman and discrete logs"(PDF).International Association for Cryptologic Research:1–3.
  22. ^Acar, Tolga; Shumow, Dan (2010)."Modular Reduction without Pre-Computation for Special Moduli"(PDF).Microsoft Research.
Prime number classes
By formula
By integer sequence
By property
Base-dependent
Patterns
k-tuples
By size
Complex numbers
Composite numbers
Related topics
First 60 primes
Retrieved from "https://en.wikipedia.org/w/index.php?title=Proth_prime&oldid=1308093759"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp