Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Proca action

From Wikipedia, the free encyclopedia
Action of a massive abelian gauge field
Quantum field theory
History
Scientists


Inphysics, specificallyfield theory andparticle physics, theProca action describes amassivespin-1field of massm inMinkowski spacetime. The corresponding equation is arelativistic wave equation called theProca equation.[1] The Proca action and equation are named after Romanian physicistAlexandru Proca.

The Proca equation is involved in theStandard Model and describes there the three massivevector bosons, i.e. the Z and W bosons.

This article uses the (+−−−)metric signature andtensor index notation in the language of4-vectors.

Lagrangian density

[edit]

The field involved is a complex4-potentialBμ=(ϕc,A){\displaystyle B^{\mu }=\left({\frac {\phi }{c}},\mathbf {A} \right)}, whereϕ{\displaystyle \phi } is a kind of generalizedelectric potential andA{\displaystyle \mathbf {A} } is a generalizedmagnetic potential. The fieldBμ{\displaystyle B^{\mu }} transforms like a complexfour-vector.

TheLagrangian density is given by:[2]

L=12(μBννBμ)(μBννBμ)+m2c22BνBν.{\displaystyle {\mathcal {L}}=-{\frac {1}{2}}(\partial _{\mu }B_{\nu }^{*}-\partial _{\nu }B_{\mu }^{*})(\partial ^{\mu }B^{\nu }-\partial ^{\nu }B^{\mu })+{\frac {m^{2}c^{2}}{\hbar ^{2}}}B_{\nu }^{*}B^{\nu }.}

wherec{\displaystyle c} is thespeed of light in vacuum,{\displaystyle \hbar } is thereduced Planck constant, andμ{\displaystyle \partial _{\mu }} is the4-gradient.

Equation

[edit]

TheEuler–Lagrange equation of motion for this case, also called theProca equation, is:

μ( μBννBμ )+( m c )2Bν=0{\displaystyle \partial _{\mu }{\Bigl (}\ \partial ^{\mu }B^{\nu }-\partial ^{\nu }B^{\mu }\ {\Bigr )}+\left({\frac {\ m\ c\ }{\hbar }}\right)^{2}B^{\nu }=0}

which is conjugate equivalent to[3]

[ μμ+( m c )2 ]Bν=0{\displaystyle \left[\ \partial _{\mu }\partial ^{\mu }+\left({\frac {\ m\ c\ }{\hbar }}\right)^{2}\ \right]B^{\nu }=0}

and with m=0 {\displaystyle \ m=0\ } (the massless case) reduces to

 νBν=0 ,{\displaystyle \ \partial _{\nu }B^{\nu }=0\ ,}

which may be called a generalizedLorenz gauge condition. For non-zero sources, with all fundamental constants included, the field equation is:

c μ0 jν=[ gμν(σσ+ m2 c2  2)νμ ]Bμ {\displaystyle c\ \mu _{0}\ j^{\nu }\;=\;\left[\ g^{\mu \nu }\left(\partial _{\sigma }\partial ^{\sigma }+{\frac {\ m^{2}\ c^{2}\ }{\ \hbar ^{2}}}\right)-\partial ^{\nu }\partial ^{\mu }\ \right]B_{\mu }\ }

When m=0 ,{\displaystyle \ m=0\ ,} the source free equations reduce toMaxwell's equations without charge or current, and the above reduces to Maxwell's charge equation. This Proca field equation is closely related to theKlein–Gordon equation, because it is second order in space and time.

In thevector calculus notation, the source free equations are:

  ϕ t(1 c2 ϕ t+A) = ( m c )2ϕ {\displaystyle \ \Box \ \phi -{\frac {\ \partial }{\partial t}}\left({\frac {1}{\ c^{2}}}{\frac {\ \partial \phi \ }{\partial t}}+\nabla \cdot \mathbf {A} \right)~=~-\left({\frac {\ m\ c\ }{\hbar }}\right)^{2}\phi \ }
  A+(1 c2  ϕ t+A) = ( m c )2A {\displaystyle \ \Box \ \mathbf {A} +\nabla \left({\frac {1}{\ c^{2}}}\ {\frac {\ \partial \phi \ }{\partial t}}+\nabla \cdot \mathbf {A} \right)~=~-\left({\frac {\ m\ c\ }{\hbar }}\right)^{2}\mathbf {A} \ }

and  {\displaystyle \ \Box \ } is theD'Alembert operator.

Gauge fixing

[edit]

The Proca action is thegauge-fixed version of theStueckelberg action via theHiggs mechanism. Quantizing the Proca action requires the use ofsecond class constraints.

If m0 ,{\displaystyle \ m\neq 0\ ,} they are not invariant under the gauge transformations of electromagnetism

 BμBμμf {\displaystyle \ B^{\mu }\mapsto B^{\mu }-\partial ^{\mu }f\ }

where f {\displaystyle \ f\ } is an arbitrary function.

See also

[edit]

References

[edit]
  1. ^Particle Physics (2nd Edition), B.R. Martin, G. Shaw, Manchester Physics, John Wiley & Sons, 2008,ISBN 978-0-470-03294-7
  2. ^W. Greiner, "Relativistic quantum mechanics", Springer, p. 359,ISBN 3-540-67457-8
  3. ^Parker, C.B., ed. (1994). "conjugate equivalence".McGraw Hill Encyclopaedia of Physics (2nd ed.). New York, NY: McGraw Hill.ISBN 0-07-051400-3.

Further reading

[edit]
Theories
Models
Regular
Low dimensional
Conformal
Supersymmetric
Superconformal
Supergravity
Topological
Particle theory
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Proca_action&oldid=1274898582"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp