Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Precision viticulture

From Wikipedia, the free encyclopedia
Precision farming applied to optimize vineyard performance

Precision viticulture isprecision farming applied to optimizevineyard performance, in particular maximizinggrape yield and quality while minimizing environmental impacts andrisk.[1] This is accomplished by measuring local variation in factors that influence grape yield and quality (soil, topography,microclimate, vine health, etc.) and applying appropriateviticulture management practices (trellis design, pruning, fertilizer application,irrigation, timing ofharvest, etc.).[2][3] Precision viticulture is based on the premise that high in-field variability for factors that affect vine growth and grape ripening warrants intensive management customized according to local conditions. Precision viticulture depends on new and emerging technologies such asglobal positioning systems (GPS),meteorologic and otherenvironmental sensors, satellite and airborneremote sensing, andgeographic information systems (GIS) to assess and respond to variability.

Background

[edit]

Precision viticulture is unique in its emphasis on vineyard management according to local variation, and in its use of science and technology to accomplish this. WhileAustralian viticulturists are generally recognized as leaders in precision viticulture, and while viticulturists worldwide have embraced the approach, the fundamental concepts have deep roots in the traditions ofOld World winemaking regions.Terroir, a related French concept, refers to the special geographic qualities or "sense of place" embodied in the wine produced in a particular region.[4]

Precision agriculture emphasizes "doing the right thing, in the right place, at the right time", and is practical for viticulture because of high local variability of conditions within vineyards, and because of responsiveness to intensive management in terms of increased grape yield and quality. According to CSIRO, Australia[5] "Typically grape yield varies eight to ten-fold under uniform management"; "patterns of yield variation are stable in time and driven by soil and topographic variation"; and "patterns of variation in fruit quality tend to be similar to those for yield, suggesting opportunities for zonal management and selective harvest". Australian precision viticulture has focused on yield monitoring, whereas California precision viticulture has focused on remote sensing.[6]

Technology for characterizing vineyard variation

[edit]

Precision viticulture uses a broad set of enabling technologies to observe and respond to vineyard variability:

Management practices

[edit]

Precision viticulture draws upon a variety of management approaches, including zonal management, in which different areas of the vineyard are managed according to their unique conditions, andadaptive management, in which different management practices are applied according to observed needs and improved knowledge. Trellis design, in terms of row orientation and geometry of vine support, and pruning practices can be tailored to optimize vine health, to protect grapes from frost, sunburn, and mildew damage, and to ensure even grape ripening.[7] Irrigation and fertilizer application schedules, pest management, and selective harvest based on timing of ripening can all be managed to minimize costs and maximize vineyard performance based on observed needs. Increasingly, precision viticulture, with its focus on management according to local variability, is coupled withorganic farming, with its focus on environmentally friendly practices without the use of chemical pesticides and fertilizers, and withsustainable agriculture, with emphasis on long-termenvironmental stewardship and economic viability.

Future

[edit]

Various integrative technological approaches are gaining increasing attention for application in precision viticulture:

  • Distributed Sensor Networks use strategic deployment of sensors throughout a vineyard to monitor key factors such as water stress and temperature.
  • Vineyard Models simulate microclimate, vine growth, grape ripening, and economic return on investment to evaluate management options.
  • Decision Support Systems (DSS) bring together vineyard environmental and economic databases, vineyard models, and GIS in an interactive software-based system to solve management problems and better make decisions.

References

[edit]
  1. ^Proffitt, T., R. Bramley, D. Lamb, and E. Winter. 2006.Precision Viticulture: A New Era in Vineyard Management and Wine Production. Winetitles, Adelaide.ISBN 978-0-9756850-4-4
  2. ^Bramley R.G.V., Hamilton R.P. 2004. Understanding variability in winegrape production systems. 1. Within vineyard variation in yield over several vintages.Australian Journal of Grape and Wine Research 10: 32-45.
  3. ^Bramley R.G.V. 2005. Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages.Australian Journal of Grape and Wine Research 11: 33-42.
  4. ^Robinson, J. (ed). 2006.The Oxford Companion to Wine, Third Edition. Oxford University Press.ISBN 0-19-860990-6
  5. ^CSIRO, 2008.Australia Precision Viticulture Overview,http://www.csiro.au/science/Precision-Viticulture.html, accessed December 15, 2008
  6. ^Goode, J. 2005.The Science of Wine: from Vine to Glass. University of California Press, Berkeley.ISBN 0-520-24800-7,ISBN 978-0-520-24800-7
  7. ^Weiss, S.B., D.C. Luth, and B. Guerra. 2003. Potential solar radiation in a VSP trellis at 38°N latitude.Practical Winery and Vineyard 25:16-27.

Further reading

[edit]

External links

[edit]
Biology and
horticulture
Environmental
variation
Vineyard
planting
Vineyard
management
Harvest
Pests and
diseases
Approaches
and issues
See also
Harvest
Pressing
Maceration
Fermentation
Aging
Other steps
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Precision_viticulture&oldid=1023720680"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp