Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Polar set

From Wikipedia, the free encyclopedia
Subset of all points that is bounded by some given point of a dual (in a dual pairing)
See also:Polar set (potential theory)

Infunctional andconvex analysis, and related disciplines ofmathematics, thepolar setA{\displaystyle A^{\circ }} is a special convex set associated to any subsetA{\displaystyle A} of avector spaceX,{\displaystyle X,} lying in thedual spaceX.{\displaystyle X^{\prime }.} Thebipolar of a subset is the polar ofA,{\displaystyle A^{\circ },} but lies inX{\displaystyle X} (notX{\displaystyle X^{\prime \prime }}).

Definitions

[edit]

There are at least three competing definitions of the polar of a set, originating in projective geometry and convex analysis.[1][citation needed] In each case, the definition describes a duality between certain subsets of apairing of vector spacesX,Y{\displaystyle \langle X,Y\rangle } over the real or complex numbers (X{\displaystyle X} andY{\displaystyle Y} are oftentopological vector spaces (TVSs)).

IfX{\displaystyle X} is a vector space over the fieldK{\displaystyle \mathbb {K} } then unless indicated otherwise,Y{\displaystyle Y} will usually, but not always, be some vector space oflinear functionals onX{\displaystyle X} and the dual pairing,:X×YK{\displaystyle \langle \cdot ,\cdot \rangle :X\times Y\to \mathbb {K} } will be thebilinearevaluation (at a point)map defined byx,f:=f(x).{\displaystyle \langle x,f\rangle :=f(x).}IfX{\displaystyle X} is atopological vector space then the spaceY{\displaystyle Y} will usually, but not always, be thecontinuous dual space ofX,{\displaystyle X,} in which case the dual pairing will again be the evaluation map.

Denote the closed ball of radiusr0{\displaystyle r\geq 0} centered at the origin in the underlying scalar fieldK{\displaystyle \mathbb {K} } ofX{\displaystyle X} byBr:=BrK:={sK:|s|r}.{\displaystyle B_{r}:=B_{r}^{\mathbb {K} }:=\{s\in \mathbb {K} :|s|\leq r\}.}

Functional analytic definition

[edit]

Absolute polar

[edit]

Suppose thatX,Y{\displaystyle \langle X,Y\rangle } is apairing. Thepolar orabsolute polar of a subsetA{\displaystyle A} ofX{\displaystyle X} is the set:A:={yY : supaA|a,y|1}    ={yY : sup|A,y|1}     where |A,y|:={|a,y|:aA}={yY : A,yB1}     where B1:={sK:|s|1}.{\displaystyle {\begin{alignedat}{4}A^{\circ }:=&\left\{y\in Y~:~\sup _{a\in A}|\langle a,y\rangle |\leq 1\right\}~~~~&&\\[0.7ex]=&\left\{y\in Y~:~\sup |\langle A,y\rangle |\leq 1\right\}~~~~&&{\text{ where }}|\langle A,y\rangle |:=\{|\langle a,y\rangle |:a\in A\}\\[0.7ex]=&\left\{y\in Y~:~\langle A,y\rangle \subseteq B_{1}\right\}~~~~&&{\text{ where }}B_{1}:=\{s\in \mathbb {K} :|s|\leq 1\}.\\[0.7ex]\end{alignedat}}}

whereA,y:={a,y:aA}{\displaystyle \langle A,y\rangle :=\{\langle a,y\rangle :a\in A\}} denotes theimage of the setA{\displaystyle A} under the map,y:XK{\displaystyle \langle \cdot ,y\rangle :X\to \mathbb {K} } defined byxx,y.{\displaystyle x\mapsto \langle x,y\rangle .} IfcobalA{\displaystyle \operatorname {cobal} A} denotes theconvex balanced hull ofA,{\displaystyle A,} which by definition is the smallestconvex andbalanced subset ofX{\displaystyle X} that containsA,{\displaystyle A,} thenA=[cobalA].{\displaystyle A^{\circ }=[\operatorname {cobal} A]^{\circ }.}

This is anaffine shift of the geometric definition; it has the useful characterization that the functional-analytic polar of the unit ball (inX{\displaystyle X}) is precisely the unit ball (inY{\displaystyle Y}).

Theprepolar orabsolute prepolar of a subsetB{\displaystyle B} ofY{\displaystyle Y} is the set:B:={xX : supbB|x,b|1}={xX : sup|x,B|1}{\displaystyle {}^{\circ }B:=\left\{x\in X~:~\sup _{b\in B}|\langle x,b\rangle |\leq 1\right\}=\{x\in X~:~\sup |\langle x,B\rangle |\leq 1\}}

Very often, the prepolar of a subsetB{\displaystyle B} ofY{\displaystyle Y} is also called thepolar orabsolute polar ofB{\displaystyle B} and denoted byB{\displaystyle B^{\circ }}; in practice, this reuse of notation and of the word "polar" rarely causes any issues (such as ambiguity) and many authors do not even use the word "prepolar".

Thebipolar of a subsetA{\displaystyle A} ofX,{\displaystyle X,} often denoted byA,{\displaystyle A^{\circ \circ },} is the set(A){\displaystyle {}^{\circ }\left(A^{\circ }\right)}; that is,A:=(A)={xX : supyA|x,y|1}.{\displaystyle A^{\circ \circ }:={}^{\circ }\left(A^{\circ }\right)=\left\{x\in X~:~\sup _{y\in A^{\circ }}|\langle x,y\rangle |\leq 1\right\}.}

Real polar

[edit]

Thereal polar of a subsetA{\displaystyle A} ofX{\displaystyle X} is the set:Ar:={yY : supaARea,y1}{\displaystyle A^{r}:=\left\{y\in Y~:~\sup _{a\in A}\operatorname {Re} \langle a,y\rangle \leq 1\right\}}and thereal prepolar of a subsetB{\displaystyle B} ofY{\displaystyle Y} is the set:rB:={xX : supbBRex,b1}.{\displaystyle {}^{r}B:=\left\{x\in X~:~\sup _{b\in B}\operatorname {Re} \langle x,b\rangle \leq 1\right\}.}

As with the absolute prepolar, the real prepolar is usually called thereal polar and is also denoted byBr.{\displaystyle B^{r}.}[2] It's important to note that some authors (e.g. [Schaefer 1999]) define "polar" to mean "real polar" (rather than "absolute polar", as is done in this article) and use the notationA{\displaystyle A^{\circ }} for it (rather than the notationAr{\displaystyle A^{r}} that is used in this article and in [Narici 2011]).

Thereal bipolar of a subsetA{\displaystyle A} ofX,{\displaystyle X,} sometimes denoted byArr,{\displaystyle A^{rr},} is the setr(Ar){\displaystyle {}^{r}\left(A^{r}\right)}; it is equal to theσ(X,Y){\displaystyle \sigma (X,Y)}-closure of theconvex hull ofA{0}.{\displaystyle A\cup \{0\}.}[2]

For a subsetA{\displaystyle A} ofX,{\displaystyle X,}Ar{\displaystyle A^{r}} is convex,σ(Y,X){\displaystyle \sigma (Y,X)}-closed, and containsA.{\displaystyle A^{\circ }.}[2] In general, it is possible thatAAr{\displaystyle A^{\circ }\neq A^{r}} but equality will hold ifA{\displaystyle A} isbalanced. Furthermore,A=(bal(Ar)){\displaystyle A^{\circ }=\left(\operatorname {bal} \left(A^{r}\right)\right)} wherebal(Ar){\displaystyle \operatorname {bal} \left(A^{r}\right)} denotes thebalanced hull ofAr.{\displaystyle A^{r}.}[2]

Competing definitions

[edit]

The definition of the "polar" of a set is not universally agreed upon. Although this article defined "polar" to mean "absolute polar", some authors define "polar" to mean "real polar" and other authors use still other definitions. No matter how an author defines "polar", the notationA{\displaystyle A^{\circ }} almost always representstheir choice of the definition (so the meaning of the notationA{\displaystyle A^{\circ }} may vary from source to source). In particular, the polar ofA{\displaystyle A} is sometimes defined as:A|r|:={yY : supaA|Rea,y|1}{\displaystyle A^{|r|}:=\left\{y\in Y~:~\sup _{a\in A}|\operatorname {Re} \langle a,y\rangle |\leq 1\right\}}where the notationA|r|{\displaystyle A^{|r|}} isnot standard notation.

We now briefly discuss how these various definitions relate to one another and when they are equivalent.

It is always the case thatA  A|r|  Ar{\displaystyle A^{\circ }~\subseteq ~A^{|r|}~\subseteq ~A^{r}}and if,{\displaystyle \langle \cdot ,\cdot \rangle } is real-valued (or equivalently, ifX{\displaystyle X} andY{\displaystyle Y} are vector spaces overR{\displaystyle \mathbb {R} }) thenA=A|r|.{\displaystyle A^{\circ }=A^{|r|}.}

IfA{\displaystyle A} is asymmetric set (that is,A=A{\displaystyle -A=A} or equivalently,AA{\displaystyle -A\subseteq A}) thenA|r|=Ar{\displaystyle A^{|r|}=A^{r}} where if in addition,{\displaystyle \langle \cdot ,\cdot \rangle } is real-valued thenA=A|r|=Ar.{\displaystyle A^{\circ }=A^{|r|}=A^{r}.}

IfX{\displaystyle X} andY{\displaystyle Y} are vector spaces overC{\displaystyle \mathbb {C} } (so that,{\displaystyle \langle \cdot ,\cdot \rangle } is complex-valued) and ifiAA{\displaystyle iA\subseteq A} (where note that this impliesA=A{\displaystyle -A=A} andiA=A{\displaystyle iA=A}), thenAA|r|=Ar(12A){\displaystyle A^{\circ }\subseteq A^{|r|}=A^{r}\subseteq \left({\tfrac {1}{\sqrt {2}}}A\right)^{\circ }}where if in additioneirAA{\displaystyle e^{ir}A\subseteq A} for all realr{\displaystyle r} thenA=Ar.{\displaystyle A^{\circ }=A^{r}.}

Thus for all of these definitions of the polar set ofA{\displaystyle A} to agree, it suffices thatsAA{\displaystyle sA\subseteq A} for all scalarss{\displaystyle s} ofunit length[note 1] (where this is equivalent tosA=A{\displaystyle sA=A} for all unit length scalars{\displaystyle s}).In particular, all definitions of the polar ofA{\displaystyle A} agree whenA{\displaystyle A} is abalanced set (which is often, but not always, the case) so that often, which of these competing definitions is used is immaterial. However, these differences in the definitions of the "polar" of a setA{\displaystyle A} do sometimes introduce subtle or important technical differences whenA{\displaystyle A} is not necessarily balanced.

Specialization for the canonical duality

[edit]

Algebraic dual space

IfX{\displaystyle X} is any vector space then letX#{\displaystyle X^{\#}} denote thealgebraic dual space ofX,{\displaystyle X,} which is the set of alllinear functionals onX.{\displaystyle X.} The vector spaceX#{\displaystyle X^{\#}} is always a closed subset of the spaceKX{\displaystyle \mathbb {K} ^{X}} of allK{\displaystyle \mathbb {K} }-valued functions onX{\displaystyle X} under the topology of pointwise convergence so whenX#{\displaystyle X^{\#}} is endowed with the subspace topology, thenX#{\displaystyle X^{\#}} becomes aHausdorffcompletelocally convextopological vector space (TVS). For any subsetAX,{\displaystyle A\subseteq X,} letA#:=A,#:={fX# : supaA|f(a)|1}={fX# : sup|f(A)|1}     where |f(A)|:={|f(a)|:aA}={fX# : f(A)B1}    where B1:={sK:|s|1}.{\displaystyle {\begin{alignedat}{4}A^{\#}:=A^{\circ ,\#}:=&\left\{f\in X^{\#}~:~\sup _{a\in A}|f(a)|\leq 1\right\}&&\\[0.7ex]=&\left\{f\in X^{\#}~:~\sup |f(A)|\leq 1\right\}~~~~&&{\text{ where }}|f(A)|:=\{|f(a)|:a\in A\}\\[0.7ex]=&\left\{f\in X^{\#}~:~f(A)\subseteq B_{1}\right\}~~~&&{\text{ where }}B_{1}:=\{s\in \mathbb {K} :|s|\leq 1\}.\\[0.7ex]\end{alignedat}}}

IfABX{\displaystyle A\subseteq B\subseteq X} are any subsets thenB#A#{\displaystyle B^{\#}\subseteq A^{\#}} andA#=[cobalA]#,{\displaystyle A^{\#}=[\operatorname {cobal} A]^{\#},} wherecobalA{\displaystyle \operatorname {cobal} A} denotes theconvex balanced hull ofA.{\displaystyle A.} For any finite-dimensional vector subspaceY{\displaystyle Y} ofX,{\displaystyle X,} letτY{\displaystyle \tau _{Y}} denote theEuclidean topology onY,{\displaystyle Y,} which is the unique topology that makesY{\displaystyle Y} into aHausdorff topological vector space (TVS). IfAclFinite{\displaystyle A_{\cup \operatorname {cl} \operatorname {Finite} }} denotes the union of allclosurescl(Y,τY)(YA){\displaystyle \operatorname {cl} _{\left(Y,\tau _{Y}\right)}(Y\cap A)} asY{\displaystyle Y} varies over all finite dimensional vector subspaces ofX,{\displaystyle X,} thenA#=[AclFinite]#{\displaystyle A^{\#}=\left[A_{\cup \operatorname {cl} \operatorname {Finite} }\right]^{\#}} (see this footnote[note 2] for an explanation). IfA{\displaystyle A} is an absorbing subset ofX{\displaystyle X} then by theBanach–Alaoglu theorem,A#{\displaystyle A^{\#}} is aweak-* compact subset ofX#.{\displaystyle X^{\#}.}

IfAX{\displaystyle A\subseteq X} is any non-empty subset of a vector spaceX{\displaystyle X} and ifY{\displaystyle Y} is any vector space of linear functionals onX{\displaystyle X} (that is, a vector subspace of thealgebraic dual space ofX{\displaystyle X}) then the real-valued map

||A:YR{\displaystyle |\,\cdot \,|_{A}\;:\,Y\,\to \,\mathbb {R} }     defined by    |x|A := sup|x(A)| := supaA|x(a)|{\displaystyle \left|x^{\prime }\right|_{A}~:=~\sup \left|x^{\prime }(A)\right|~:=~\sup _{a\in A}\left|x^{\prime }(a)\right|}

is aseminorm onY.{\displaystyle Y.} IfA={\displaystyle A=\varnothing } then by definition of thesupremum,sup|x(A)|={\displaystyle \,\sup \left|x^{\prime }(A)\right|=-\infty \,} so that the map||={\displaystyle \,|\,\cdot \,|_{\varnothing }=-\infty \,} defined above would not be real-valued and consequently, it would not be a seminorm.

Continuous dual space

Suppose thatX{\displaystyle X} is atopological vector space (TVS) withcontinuous dual spaceX.{\displaystyle X^{\prime }.} The important special case whereY:=X{\displaystyle Y:=X^{\prime }} and the brackets represent the canonical map:x,x:=x(x){\displaystyle \left\langle x,x^{\prime }\right\rangle :=x^{\prime }(x)}is now considered. The tripleX,X{\displaystyle \left\langle X,X^{\prime }\right\rangle } is the called thecanonicalpairing associated withX.{\displaystyle X.}

The polar of a subsetAX{\displaystyle A\subseteq X} with respect to this canonical pairing is:A:={xX : supaA|x(a)|1}     because a,x:=x(a)={xX : sup|x(A)|1}     where |x(A)|:={|x(a)|:aA}={xX : x(A)B1}     where B1:={sK:|s|1}.{\displaystyle {\begin{alignedat}{4}A^{\circ }:=&\left\{x^{\prime }\in X^{\prime }~:~\sup _{a\in A}\left|x^{\prime }(a)\right|\leq 1\right\}~~~~&&{\text{ because }}\left\langle a,x^{\prime }\right\rangle :=x^{\prime }(a)\\[0.7ex]=&\left\{x^{\prime }\in X^{\prime }~:~\sup \left|x^{\prime }(A)\right|\leq 1\right\}~~~~&&{\text{ where }}\left|x^{\prime }(A)\right|:=\left\{\left|x^{\prime }(a)\right|:a\in A\right\}\\[0.7ex]=&\left\{x^{\prime }\in X^{\prime }~:~x^{\prime }(A)\subseteq B_{1}\right\}~~~~&&{\text{ where }}B_{1}:=\{s\in \mathbb {K} :|s|\leq 1\}.\\[0.7ex]\end{alignedat}}}

For any subsetAX,{\displaystyle A\subseteq X,}A=[clXA]{\displaystyle A^{\circ }=\left[\operatorname {cl} _{X}A\right]^{\circ }} whereclXA{\displaystyle \operatorname {cl} _{X}A} denotes theclosure ofA{\displaystyle A} inX.{\displaystyle X.}

TheBanach–Alaoglu theorem states that ifAX{\displaystyle A\subseteq X} is a neighborhood of the origin inX{\displaystyle X} thenA=A#{\displaystyle A^{\circ }=A^{\#}} and this polar set is acompact subset of the continuous dual spaceX{\displaystyle X^{\prime }} whenX{\displaystyle X^{\prime }} is endowed with theweak-* topology (also known as the topology of pointwise convergence).

IfA{\displaystyle A} satisfiessAA{\displaystyle sA\subseteq A} for all scalarss{\displaystyle s} of unit length then one may replace the absolute value signs byRe{\displaystyle \operatorname {Re} } (the real part operator) so that:A=Ar:={xX : supaARex(a)1}={xX : supRex(A)1}.{\displaystyle {\begin{alignedat}{4}A^{\circ }=A^{r}:=&\left\{x^{\prime }\in X^{\prime }~:~\sup _{a\in A}\operatorname {Re} x^{\prime }(a)\leq 1\right\}\\[0.7ex]=&\left\{x^{\prime }\in X^{\prime }~:~\sup \operatorname {Re} x^{\prime }(A)\leq 1\right\}.\\[0.7ex]\end{alignedat}}}

The prepolar of a subsetB{\displaystyle B} ofY=X{\displaystyle Y=X^{\prime }} is:B:={xX : supbB|b(x)|1}={xX:sup|B(x)|1}{\displaystyle {}^{\circ }B:=\left\{x\in X~:~\sup _{b^{\prime }\in B}\left|b^{\prime }(x)\right|\leq 1\right\}=\{x\in X:\sup |B(x)|\leq 1\}}

IfB{\displaystyle B} satisfiessBB{\displaystyle sB\subseteq B} for all scalarss{\displaystyle s} of unit length then one may replace the absolute value signs withRe{\displaystyle \operatorname {Re} } so that:B={xX : supbBReb(x)1}={xX : supReB(x)1}{\displaystyle {}^{\circ }B=\left\{x\in X~:~\sup _{b^{\prime }\in B}\operatorname {Re} b^{\prime }(x)\leq 1\right\}=\{x\in X~:~\sup \operatorname {Re} B(x)\leq 1\}}whereB(x):={b(x) : bB}.{\displaystyle B(x):=\left\{b^{\prime }(x)~:~b^{\prime }\in B\right\}.}

Thebipolar theorem characterizes the bipolar of a subset of a topological vector space.

IfX{\displaystyle X} is a normed space andS{\displaystyle S} is the open or closed unit ball inX{\displaystyle X} (or even any subset of the closed unit ball that contains the open unit ball) thenS{\displaystyle S^{\circ }} is the closed unit ball in the continuous dual spaceX{\displaystyle X^{\prime }} whenX{\displaystyle X^{\prime }} is endowed with its canonicaldual norm.

Geometric definition for cones

[edit]
Main article:Pole and polar

Thepolar cone of a convex coneAX{\displaystyle A\subseteq X} is the setA:={yY : supxAx,y0}{\displaystyle A^{\circ }:=\left\{y\in Y~:~\sup _{x\in A}\langle x,y\rangle \leq 0\right\}}

This definition gives a duality on points and hyperplanes, writing the latter as the intersection of two oppositely-oriented half-spaces. The polar hyperplane of a pointxX{\displaystyle x\in X} is the locus{y : y,x=0}{\displaystyle \{y~:~\langle y,x\rangle =0\}}; thedual relationship for a hyperplane yields that hyperplane's polar point.[3][citation needed]

Some authors (confusingly) call a dual cone the polar cone; we will not follow that convention in this article.[4]

Properties

[edit]

Unless stated otherwise,X,Y{\displaystyle \langle X,Y\rangle } will be apairing. The topologyσ(Y,X){\displaystyle \sigma (Y,X)} is theweak-* topology onY{\displaystyle Y} whileσ(X,Y){\displaystyle \sigma (X,Y)} is theweak topology onX.{\displaystyle X.} For any setA,{\displaystyle A,}Ar{\displaystyle A^{r}} denotes the real polar ofA{\displaystyle A} andA{\displaystyle A^{\circ }} denotes the absolute polar ofA.{\displaystyle A.} The term "polar" will refer to theabsolute polar.

The last two results explain why equicontinuous subsets of the continuous dual space play such a prominent role in the modern theory of functional analysis: because equicontinuous subsets encapsulate all information about the locally convex spaceX{\displaystyle X}'s original topology.

Set relations

See also

[edit]

Notes

[edit]
  1. ^Since for all of these completing definitions of the polar setA{\displaystyle A^{\circ }} to agree, if,{\displaystyle \langle \cdot ,\cdot \rangle } is real-valued then it suffices forA{\displaystyle A} to be symmetric, while if,{\displaystyle \langle \cdot ,\cdot \rangle } is complex-valued then it suffices thateirAA{\displaystyle e^{ir}A\subseteq A} for all reals.{\displaystyle s.}
  2. ^To prove thatA#[AclFinite]#,{\displaystyle A^{\#}\subseteq \left[A_{\cup \operatorname {cl} \operatorname {Finite} }\right]^{\#},} letfA#.{\displaystyle f\in A^{\#}.} IfY{\displaystyle Y} is a finite-dimensional vector subspace ofX{\displaystyle X} then becausef|Y:(Y,τY)K{\displaystyle f{\big \vert }_{Y}:\left(Y,\tau _{Y}\right)\to \mathbb {K} } is continuous (as is true of all linear functionals on a finite-dimensional Hausdorff TVS), it follows fromf(A)B1{\displaystyle f(A)\subseteq B_{1}} andB1{\displaystyle B_{1}} being a closed set thatf(cl(Y,τY)(YA))=f|Y(cl(Y,τY)(YA))clK(f(YA))clKf(A)clKB1=B1.{\displaystyle f\left(\operatorname {cl} _{\left(Y,\tau _{Y}\right)}(Y\cap A)\right)=f{\big \vert }_{Y}\left(\operatorname {cl} _{\left(Y,\tau _{Y}\right)}(Y\cap A)\right)\subseteq \operatorname {cl} _{\mathbb {K} }(f(Y\cap A))\subseteq \operatorname {cl} _{\mathbb {K} }f(A)\subseteq \operatorname {cl} _{\mathbb {K} }B_{1}=B_{1}.} The union of all such sets is consequently also a subset ofB1,{\displaystyle B_{1},} which proves thatf(AclFinite)B1{\displaystyle f\left(A_{\cup \operatorname {cl} \operatorname {Finite} }\right)\subseteq B_{1}} and sof[AclFinite]#.{\displaystyle f\in \left[A_{\cup \operatorname {cl} \operatorname {Finite} }\right]^{\#}.}{\displaystyle \blacksquare } In general, ifτ{\displaystyle \tau } is any TVS-topology onX{\displaystyle X} thenAclFinitecl(X,τ)A.{\displaystyle A_{\cup \operatorname {cl} \operatorname {Finite} }\subseteq \operatorname {cl} _{(X,\tau )}A.}

References

[edit]
  1. ^abAliprantis, C.D.; Border, K.C. (2007).Infinite Dimensional Analysis: A Hitchhiker's Guide (3 ed.). Springer. p. 215.doi:10.1007/3-540-29587-9.ISBN 978-3-540-32696-0.
  2. ^abcdeNarici & Beckenstein 2011, pp. 225–273.
  3. ^abZălinescu, C. (2002).Convex Analysis in General Vector Spaces. River Edge, NJ: World Scientific. pp. 7–8.ISBN 978-9812380678.
  4. ^Rockafellar, T.R. (1970).Convex Analysis. Princeton University. pp. 121-8.ISBN 978-0-691-01586-6.
  5. ^abcTrèves 2006, pp. 195–201.
  6. ^abcdefgSchaefer & Wolff 1999, pp. 123–128.
  7. ^Niculescu, C.P.; Persson, Lars-Erik (2018).Convex Functions and Their Applications. CMS Books in Mathematics. Cham, Switzerland: Springer. pp. 94–5,134–5.doi:10.1007/978-3-319-78337-6.ISBN 978-3-319-78337-6.
  8. ^Narici & Beckenstein 2011, p. 472.
  9. ^Jarchow 1981, pp. 148–150.

Bibliography

[edit]
Duality and spaces oflinear maps
Basic concepts
Topologies
Main results
Maps
Subsets
Other concepts
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Polar_set&oldid=1218730041"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp