Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pinoline

From Wikipedia, the free encyclopedia
Pinoline
Names
Preferred IUPAC name
6-Methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole
Other names
6-MeO-THBC; 5-MeO-TLN; Pinoline; 6-Methoxy-2,3,4,9-tetrahydro-1H-β-carboline; 6-Methoxy-1,2,3,4-tetrahydro-β-carboline; 6-Methoxy-tetrahydronorharman; 6-Methoxy-2,3,4,9-tetrahydro-1H-β-carboline
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.161.873Edit this at Wikidata
UNII
  • InChI=1S/C12H14N2O/c1-15-8-2-3-11-10(6-8)9-4-5-13-7-12(9)14-11/h2-3,6,13-14H,4-5,7H2,1H3 ☒N
    Key: QYMDEOQLJUUNOF-UHFFFAOYSA-N ☒N
  • InChI=1/C12H14N2O/c1-15-8-2-3-11-10(6-8)9-4-5-13-7-12(9)14-11/h2-3,6,13-14H,4-5,7H2,1H3
    Key: QYMDEOQLJUUNOF-UHFFFAOYAW
  • COC1=CC2=C(C=C1)NC3=C2CCNC3
Properties
C12H14N2O
Molar mass202.257 g·mol−1
Melting point216 to 224 °C (421 to 435 °F; 489 to 497 K)
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Pinoline is aβ-carboline andmethoxylatedtryptoline (5-methoxytryptoline) long claimed to be produced in thepineal gland during the metabolism ofmelatonin, however its pineal occurrence remains controversial.[1] Its IUPAC name is6-methoxy-1,2,3,4-tetrahydro-β-carboline, usually abbreviated as6-MeO-THBC, and its more common name is a contraction of "pineal β-carboline".[2] Thebiological activity of this molecule is of interest as a potentialfree radical scavenger, also known as anantioxidant,[3] and as amonoamine oxidase A inhibitor.[4]

Bausch & Lomb filed a patent for a drug delivery device utilizing this molecule, designed to treat various ophthalmic disorders in 2006.[5]

Pharmacology

[edit]

One of pinoline's pharmacological properties is its ability to promoteneurogenesis in vitro; even at trace concentrations.[6]

Aluminium toxicity causes an increase inlipid peroxidation, with most damage occurring in the brain. A recent review of studies shows pinoline and melatonin to be effective at reducing the lipid peroxidation. Studies included both human and animal subjects. The studies’ results support that pinoline has antioxidant properties.[citation needed]

Lipopolysaccharide is produced byGram-negative bacteria and stimulates the production of free radicals which in turn cause lipid peroxidation. A recent study compared the effectiveness of melatonin and other similar compounds on the lipopolysaccharide induced lipid peroxidation. The results showed support for pinoline’s ability to reduce damage fromlipid peroxidation[citation needed]. Pinoline was also shown to be more effective thanvitamin E at reducing lipopolysaccharide activity in the retina.[7]

Another recent study compared the antioxidant properties of compounds from the tryptophan metabolic pathway in the pineal gland against oxidative damage to the lipids and proteins ofsynaptosomes. Synaptosomes isolated from rat brains were used in an experiment assessing damage by measuring malondialdehyde, 4-hydroxyalkenal, andcarbonyl content in the proteins. Pinoline was shown to be the most powerful antioxidant. These results support the evidence for pinoline’s antioxidant abilities and the potential to protect against oxidative damage.[8]

See also

[edit]

References

[edit]
  1. ^Barker, Steven A. (2013)."LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate"(PDF).Biomedical Chromatography.27 (12):1690–1700.doi:10.1002/bmc.2981.hdl:2027.42/101767.PMID 23881860.
  2. ^Callaway, James C.; Gyntber, Jukka; Poso, Antti; Airaksinen, Mauno M.; Vepsäläinen, Jouko (1994). "The pictet-spengler reaction and biogenic tryptamines: Formation of tetrahydro-β-carbolines at physiologicalpH".Journal of Heterocyclic Chemistry.31 (2): 431.doi:10.1002/jhet.5570310231.
  3. ^Schiller, Erich; Bartsch, H. (2003).Free Radicals and Inhalation Pathology: Respiratory System, Mononuclear Phagocyte System, Hypoxia and Reoxygenation, Pneumoconioses, and Other Granulomatoses, Cancer(Google Books, page view). Springer. p. 107.ISBN 978-3-540-00201-7. Retrieved2009-02-14.
  4. ^Airaksinen, M. M., Huang, J. T., Ho, B. T., Taylor, D., and Walker, K. (1978). "The Uptake of 6-Methoxy-1,2,3,4-Tetrahydro-β-carboline and its Effect on 5-Hydroxytryptamine Uptake and Release in Blood Platelets".Acta Pharmacologica et Toxicologica.43 (5):375–380.doi:10.1111/j.1600-0773.1978.tb02281.x.PMID 726902.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^Bartels, S. P. (2006)U.S. Patent No. 20,060,292,202 Washington, DC: U.S.
  6. ^Mario de la Fuente et al. 2015 "Neurogenic Potential Assessment and Pharmacological Characterization of 6-Methoxy-1,2,3,4-tetrahydro-β-carboline (Pinoline) and Melatonin–Pinoline Hybrids"doi:10.1021/acschemneuro.5b00041
  7. ^Sewerynek, E; Wiktorska, JA; Stuss, M (2011). "6-methoxytryptophol reduces lipopolysaccharide-induced lipid peroxidation in vitro more effectively than melatonin".Journal of Physiology and Pharmacology.62 (6):677–83.PMID 22314571.
  8. ^Millán-Plano, Sergio; Piedrafita, Eduardo; Miana-Mena, Francisco J.; Fuentes-Broto, Lorena; Martínez-Ballarín, Enrique; López-Pingarrón, Laura; Sáenz, María A.; García, Joaquín J. (2010)."Melatonin and Structurally-Related Compounds Protect Synaptosomal Membranes from Free Radical Damage".International Journal of Molecular Sciences.11 (1):312–28.doi:10.3390/ijms11010312.PMC 2821006.PMID 20162018.
Tryptamines
4-Hydroxytryptamines
andesters/ethers
5-Hydroxy- and
5-methoxytryptamines
N-Acetyltryptamines
α-Alkyltryptamines
α-Ketotryptamines
Cyclized tryptamines
Isotryptamines
Related compounds
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pinoline&oldid=1324422784"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp