Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Nevanlinna–Pick interpolation

From Wikipedia, the free encyclopedia
(Redirected fromPick matrix)

Incomplex analysis, giveninitial data consisting ofn{\displaystyle n} pointsλ1,,λn{\displaystyle \lambda _{1},\ldots ,\lambda _{n}} in the complex unit discD{\displaystyle \mathbb {D} } andtarget data consisting ofn{\displaystyle n} pointsz1,,zn{\displaystyle z_{1},\ldots ,z_{n}} inD{\displaystyle \mathbb {D} }, theNevanlinna–Pick interpolation problem is to find aholomorphic functionφ{\displaystyle \varphi } thatinterpolates the data, that is for alli{1,...,n}{\displaystyle i\in \{1,...,n\}},

φ(λi)=zi{\displaystyle \varphi (\lambda _{i})=z_{i}},

subject to the constraint|φ(λ)|1{\displaystyle \left\vert \varphi (\lambda )\right\vert \leq 1} for allλD{\displaystyle \lambda \in \mathbb {D} }.

Georg Pick andRolf Nevanlinna solved the problem independently in 1916 and 1919 respectively, showing that an interpolating function exists if and only if a matrix defined in terms of the initial and target data ispositive semi-definite.

Background

[edit]

The Nevanlinna–Pick theorem represents ann{\displaystyle n}-point generalization of theSchwarz lemma. Theinvariant form of the Schwarz lemma states that for a holomorphic functionf:DD{\displaystyle f:\mathbb {D} \to \mathbb {D} }, for allλ1,λ2D{\displaystyle \lambda _{1},\lambda _{2}\in \mathbb {D} },

|f(λ1)f(λ2)1f(λ2)¯f(λ1)||λ1λ21λ2¯λ1|.{\displaystyle \left|{\frac {f(\lambda _{1})-f(\lambda _{2})}{1-{\overline {f(\lambda _{2})}}f(\lambda _{1})}}\right|\leq \left|{\frac {\lambda _{1}-\lambda _{2}}{1-{\overline {\lambda _{2}}}\lambda _{1}}}\right|.}

Settingf(λi)=zi{\displaystyle f(\lambda _{i})=z_{i}}, this inequality is equivalent to the statement that the matrix given by

[1|z1|21|λ1|21z1¯z21λ1¯λ21z2¯z11λ2¯λ11|z2|21|λ2|2]0,{\displaystyle {\begin{bmatrix}{\frac {1-|z_{1}|^{2}}{1-|\lambda _{1}|^{2}}}&{\frac {1-{\overline {z_{1}}}z_{2}}{1-{\overline {\lambda _{1}}}\lambda _{2}}}\\[5pt]{\frac {1-{\overline {z_{2}}}z_{1}}{1-{\overline {\lambda _{2}}}\lambda _{1}}}&{\frac {1-|z_{2}|^{2}}{1-|\lambda _{2}|^{2}}}\end{bmatrix}}\geq 0,}

that is thePick matrix is positive semidefinite.

Combined with the Schwarz lemma, this leads to the observation that forλ1,λ2,z1,z2D{\displaystyle \lambda _{1},\lambda _{2},z_{1},z_{2}\in \mathbb {D} }, there exists a holomorphic functionφ:DD{\displaystyle \varphi :\mathbb {D} \to \mathbb {D} } such thatφ(λ1)=z1{\displaystyle \varphi (\lambda _{1})=z_{1}} andφ(λ2)=z2{\displaystyle \varphi (\lambda _{2})=z_{2}} if and only if the Pick matrix

(1zj¯zi1λj¯λi)i,j=1,20.{\displaystyle \left({\frac {1-{\overline {z_{j}}}z_{i}}{1-{\overline {\lambda _{j}}}\lambda _{i}}}\right)_{i,j=1,2}\geq 0.}

The Nevanlinna–Pick theorem

[edit]

The Nevanlinna–Pick theorem states the following. Givenλ1,,λn,z1,,znD{\displaystyle \lambda _{1},\ldots ,\lambda _{n},z_{1},\ldots ,z_{n}\in \mathbb {D} }, there exists a holomorphic functionφ:DD¯{\displaystyle \varphi :\mathbb {D} \to {\overline {\mathbb {D} }}} such thatφ(λi)=zi{\displaystyle \varphi (\lambda _{i})=z_{i}} if and only if the Pick matrix

(1zj¯zi1λj¯λi)i,j=1n{\displaystyle \left({\frac {1-{\overline {z_{j}}}z_{i}}{1-{\overline {\lambda _{j}}}\lambda _{i}}}\right)_{i,j=1}^{n}}

is positive semi-definite. Furthermore, the functionφ{\displaystyle \varphi } is unique if and only if the Pick matrix has zerodeterminant. In this case,φ{\displaystyle \varphi } is aBlaschke product, with degree equal to the rank of the Pick matrix (except in the trivial case whereall thezi{\displaystyle z_{i}}'s are the same).

Generalization

[edit]

The generalization of the Nevanlinna–Pick theorem became an area of active research inoperator theory following the work ofDonald Sarason on theSarason interpolation theorem.[1] Sarason gave a new proof of the Nevanlinna–Pick theorem usingHilbert space methods in terms ofoperator contractions. Other approaches were developed in the work ofL. de Branges, andB. Sz.-Nagy andC. Foias.

It can be shown that theHardy spaceH 2 is areproducing kernel Hilbert space, and that its reproducing kernel (known as theSzegő kernel) is

K(a,b)=(1ba¯)1.{\displaystyle K(a,b)=\left(1-b{\bar {a}}\right)^{-1}.\,}

Because of this, the Pick matrix can be rewritten as

((1zizj¯)K(λj,λi))i,j=1N.{\displaystyle \left((1-z_{i}{\overline {z_{j}}})K(\lambda _{j},\lambda _{i})\right)_{i,j=1}^{N}.\,}

This description of the solution has motivated various attempts to generalise Nevanlinna and Pick's result.

The Nevanlinna–Pick problem can be generalised to that of finding a holomorphic functionf:RD{\displaystyle f:R\to \mathbb {D} } that interpolates a given set of data, whereR is now an arbitrary region of the complex plane.

M. B. Abrahamse showed that if the boundary ofR consists of finitely many analytic curves (sayn + 1), then an interpolating functionf exists if and only if

((1zizj¯)Kτ(λj,λi))i,j=1N{\displaystyle \left((1-z_{i}{\overline {z_{j}}})K_{\tau }(\lambda _{j},\lambda _{i})\right)_{i,j=1}^{N}\,}

is a positive semi-definite matrix, for allτ{\displaystyle \tau } in then-torus. Here, theKτ{\displaystyle K_{\tau }}s are the reproducing kernels corresponding to a particular set of reproducing kernel Hilbert spaces, which are related to the setR. It can also be shown thatf is unique if and only if one of the Pick matrices has zero determinant.

Notes

[edit]
  • Pick's original proof concerned functions with positive real part. Under a linear fractionalCayley transform, his result holds on maps from the disc to the disc.

References

[edit]
  1. ^Sarason, Donald (1967)."Generalized Interpolation inH{\displaystyle H^{\infty }}".Trans. Amer. Math. Soc.127:179–203.doi:10.1090/s0002-9947-1967-0208383-8.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Nevanlinna–Pick_interpolation&oldid=1242417766"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp