Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Phosphoribosyl-N-formylglycineamide

From Wikipedia, the free encyclopedia
Phosphoribosyl-N-formylglycineamide
Names
IUPAC name
(1R)-1,4-Anhydro-1-(N2-formylglycinamido)-D-ribitol 5-(dihydrogen phosphate)
Systematic IUPAC name
[(2R,3S,4R,5R)-5-(2-Formamidoacetamido)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate
Other names
Formylglycinamide ribonucleotide,
Formylglycinamide ribotide,
FGAR
Identifiers
3D model (JSmol)
ChemSpider
MeSHPhosphoribosyl-N-formylglycineamide
  • InChI=1S/C8H15N2O9P/c11-3-9-1-5(12)10-8-7(14)6(13)4(19-8)2-18-20(15,16)17/h3-4,6-8,13-14H,1-2H2,(H,9,11)(H,10,12)(H2,15,16,17)/t4-,6-,7-,8-/m1/s1 checkY
    Key: VDXLUNDMVKSKHO-XVFCMESISA-N checkY
  • C([C@@H]1[C@H]([C@H]([C@@H](O1)NC(=O)CNC=O)O)O)OP(=O)(O)O
Properties
C8H15N2O9P
Molar mass314.187 g/mol
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
Chemical compound

Phosphoribosyl-N-formylglycineamide (orFormylGlycinAmideRibotide, FGAR) is a biochemical intermediate in the formation ofpurinenucleotides viainosine-5-monophosphate, and hence is a building block forDNA andRNA.[1][2] The vitaminsthiamine[3] andcobalamin[4] also contain fragments derived from FGAR.[5]

FGAR is formed when the enzymephosphoribosylglycinamide formyltransferase adds aformyl group from10-formyltetrahydrofolate toglycineamide ribonucleotide (GAR) in reactionEC2.1.2.2:[6]

GAR + 10-formyltetrahydrofolate → FGAR + tetrahydrofolate

The biosynthesis pathway next converts FGAR to anamidine by the action ofphosphoribosylformylglycinamidine synthase (EC6.3.5.3), transferring an amino group from glutamine and giving5'-phosphoribosylformylglycinamidine (FGAM) in a reaction that also requires ATP:[6]

FGAR + ATP + glutamine + H2O → FGAM + ADP + glutamate + Pi

See also

[edit]

References

[edit]
  1. ^R. Caspi (2009-01-13)."Pathway: 5-aminoimidazole ribonucleotide biosynthesis I". MetaCyc Metabolic Pathway Database. Retrieved2022-02-02.
  2. ^Gupta, Rani; Gupta, Namita (2021). "Nucleotide Biosynthesis and Regulation".Fundamentals of Bacterial Physiology and Metabolism. pp. 525–554.doi:10.1007/978-981-16-0723-3_19.ISBN 978-981-16-0722-6.S2CID 234897784.
  3. ^Chatterjee, Abhishek; Hazra, Amrita B.; Abdelwahed, Sameh; Hilmey, David G.; Begley, Tadhg P. (2010)."A "Radical Dance" in Thiamin Biosynthesis: Mechanistic Analysis of the Bacterial Hydroxymethylpyrimidine Phosphate Synthase".Angewandte Chemie International Edition.49 (46):8653–8656.doi:10.1002/anie.201003419.PMC 3147014.PMID 20886485.
  4. ^R. Caspi (2019-09-23)."Pathway: 5-hydroxybenzimidazole biosynthesis (anaerobic)". MetaCyc Metabolic Pathway Database. Retrieved2022-02-10.
  5. ^Mehta, Angad P.; Abdelwahed, Sameh H.; Fenwick, Michael K.; Hazra, Amrita B.; Taga, Michiko E.; Zhang, Yang; Ealick, Steven E.; Begley, Tadhg P. (2015)."Anaerobic 5-Hydroxybenzimidazole Formation from Aminoimidazole Ribotide: An Unanticipated Intersection of Thiamin and Vitamin B12 Biosynthesis".Journal of the American Chemical Society.137 (33):10444–10447.doi:10.1021/jacs.5b03576.PMC 4753784.PMID 26237670.
  6. ^abWelin, Martin; Grossmann, Jörg Günter; Flodin, Susanne; Nyman, Tomas; Stenmark, Pål; Trésaugues, Lionel; Kotenyova, Tetyana; Johansson, Ida; Nordlund, Pär; Lehtiö, Lari (2010)."Structural studies of tri-functional human GART".Nucleic Acids Research.38 (20):7308–7319.doi:10.1093/nar/gkq595.PMC 2978367.PMID 20631005.
purine
metabolism
anabolism
R5PIMP:
IMPAMP:
IMPGMP:
catabolism
pyrimidine
metabolism
anabolism
catabolism
uracil:
thymine:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Phosphoribosyl-N-formylglycineamide&oldid=1153478633"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp