Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Phospholipase A2

From Wikipedia, the free encyclopedia
Peripheral membrane protein
phospholipase A2
Phospholipase cleavage sites. Note that an enzyme that displays both PLA1 and PLA2 activities is called aphospholipase B.
Identifiers
EC no.3.1.1.4
CAS no.9001-84-7
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDBPDBePDBsum
Gene OntologyAmiGO /QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
Protein family
Phospholipase A2
Bee venom phospholipase A2 sPLA2.Middle plane of the lipid bilayer - black dots. Boundary of the hydrocarbon core region - red dots (extracellular side). Layer of lipid phosphates - yellow dots.
Identifiers
SymbolPhospholip_A2_1
PfamPF00068
InterProIPR001211
PROSITEPDOC00109
SCOP21bbc /SCOPe /SUPFAM
OPM superfamily82
OPM protein1g4i
Available protein structures:
Pfam  structures /ECOD  
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary

The enzymephospholipase A2 (EC 3.1.1.4,PLA2, systematic name phosphatidylcholine 2-acylhydrolase) catalyses the cleavage offatty acids in position 2 ofphospholipids,hydrolyzing the bond between the second fatty acid "tail" and theglycerol molecule:

phosphatidylcholine + H2O = 1-acylglycerophosphocholine + a carboxylate

This particularphospholipase specifically recognizes thesn2acyl bond ofphospholipids and catalyticallyhydrolyzes the bond, releasingarachidonic acid andlysophosphatidyl choline, a precursor oflysophosphatidic acid. Upon downstream modification bycyclooxygenases orlipoxygenases,arachidonic acid is modified into active compounds calledeicosanoids. Eicosanoids includeprostaglandins andleukotrienes, which are categorized as anti-inflammatory and inflammatory mediators.[1]

PLA2 enzymes are commonly found in mammalian tissues as well as arachnid, insect, and snake venom.[2] Venom from bees is largely composed ofmelittin, which is a stimulant of PLA2. Due to the increased presence and activity of PLA2 resulting from a snake or insect bite,arachidonic acid is released from thephospholipid membrane disproportionately. As a result, inflammation and pain occur at the site.[3] There are alsoprokaryotic A2 phospholipases.

Additional types ofphospholipases includephospholipase A1,phospholipase B,phospholipase C, andphospholipase D.[4]

Families

[edit]

Phospholipases A2 include several unrelatedprotein families with common enzymatic activity. Two most notable families are secreted and cytosolic phospholipases A2. Other families include Ca2+ independent PLA2 (iPLA2) and lipoprotein-associated PLA2 (Lp-PLA2), also known as platelet activating factor acetylhydrolase (PAF-AH).

Secreted phospholipases A2 (sPLA2)

[edit]

Theextracellular forms of phospholipases A2 have been isolated from differentvenoms (snake,[5]bee, andwasp), and from virtually every studiedmammaliantissue (includingpancreas andkidney) as well as frombacteria. They requireCa2+ for activity.

Pancreatic sPLA2 serve for the initialdigestion of phospholipid compounds in dietaryfat. Venom phospholipases help to immobilize prey by promoting celllysis.[citation needed]

In mice, group III sPLA2 are involved in sperm maturation,[6] and group X are thought to be involved in spermcapacitation.[7]

sPLA2 has been shown to promoteinflammation in mammals by catalyzing the first step of thearachidonic acid pathway by breaking downphospholipids, resulting in the formation offatty acids includingarachidonic acid. This arachidonic acid is then metabolized to form several inflammatory andthrombogenic molecules. Excess levels of sPLA2 is thought to contribute to severalinflammatory diseases, and has been shown to promote vascular inflammation correlating with coronary events incoronary artery disease andacute coronary syndrome,[8] and possibly leading toacute respiratory distress syndrome[9] and progression oftonsillitis.[10]

In children, excess levels of sPLA2 have been associated with inflammation thought to exacerbateasthma[11] and ocular surface inflammation (dry eye).[12]

Increased sPLA2 activity is observed in thecerebrospinal fluid of humans withAlzheimer's disease andmultiple sclerosis, and may serve as a marker of increases in permeability of theblood-cerebrospinal fluid barrier.[13]

There are atypical members of the phospholipase A2 family, such asPLA2G12B, that have no phospholipase activity with typical phospholipase substrate.[14] The lack of enzymatic activity ofPLA2G12B indicates that it may have unique function distinctive from other sPLA2. It has been shown that inPLA2G12B null mice, VLDL levels were greatly reduced, suggesting it could have an effect in lipoprotein secretion.[15][16]

Cytosolic phospholipases A2 (cPLA2)

[edit]

Theintracellular, group IV PLA2 are also Ca-dependent, but they have a different3D structure and are significantly larger than secreted PLA2 (more than 700 residues). They include aC2 domain and a large catalytic domain.

These phospholipases are involved incell signaling processes, such asinflammatory response. They releasearachidonic acid from membrane phospholipids. Arachidonic acid is both asignaling molecule and the precursor for the synthesis of other signaling molecules termedeicosanoids. These includeleukotrienes andprostaglandins. Some eicosanoids are synthesized fromdiacylglycerol, released from thelipid bilayer by phospholipase C (see below).

Phospholipases A2 can be classified based on sequence homology.[17]

Lipoprotein-associated PLA2 (Lp-PLA2)

[edit]
Main article:Lipoprotein-associated phospholipase A2

Increased levels of Lp-PLA2 are associated with cardiac disease, and may contribute toatherosclerosis.[18] However, the role of Lp-PLA2 in atherosclerosis may depend on its carrier in plasma, and several lines of evidence suggest that HDL-associated Lp-PLA2 may substantially contribute to the HDL antiatherogenic activities.[19]

Mechanism

[edit]

Two reaction mechanisms have been suggested for sPLA2s, the single-water mechanism and the assisted water mechanism.[20] The single-watercatalytic mechanism is initiated by a His-48/Asp-99/calcium complex within the active site. The calcium ion polarizes the sn-2 carbonyl oxygen. Whether it can simultaneously coordinate with thecatalytic water molecule, w5, is unclear. His-48 improves thenucleophilicity of thecatalytic water via a bridging second water molecule, w6. In the assisted-water mechanism, two water molecules are necessary to traverse the distance between the catalytichistidine and theester. Thebasicity of His-48 is thought to be enhanced throughhydrogen bonding with Asp-99. Anasparagine substitution for His-48 maintains wild-type activity, as theamide functional group onasparagine can also function to lower the pKa, oracid dissociation constant, of the bridging water molecule. computer simulations of the reaction mechanism of the human synovial and viper venom sPLA2s suggest that both the single-water and assisted-water mechanisms are viable,[21][22] as the difference in the free energy of the rate-limiting step is small. The latter is characterized as the degradation of the tetrahedral intermediate composed of a calcium coordinatedoxyanion. The role of calcium can also be duplicated by other relatively small cations like cobalt and nickel.[23] Before becoming active in digestion, the proform of PLA2 is activated by trypsin.

Close-up rendering of PLA2 active site withphosphateenzyme inhibitor. Calcium ion (pink) coordinates with phosphate (light blue). Phosphate mimics tetrahedral intermediate blocking substrate access toactive site.His-48, Asp-99, and two water molecules are also shown.[24]
Mechanism of hydrolysis catalyzed by PLA2

PLA2 can also be characterized as having a channel featuring ahydrophobic wall in which hydrophobic amino acid residues such asPhe,Leu, andTyr serve to bind the substrate. Another component of PLA2 is the sevendisulfide bridges that are influential in regulation and stable protein folding.[23]

Biological effects

[edit]

PLA2 action can release histamine from rat peritoneal mast cells.[25] It also causes histamine release in human basophils.[26]

Regulation

[edit]

Due to the importance of PLA2 ininflammatory responses, regulation of the enzyme is essential. cPLA2 is regulated byphosphorylation and calcium concentrations. cPLA2 is phosphorylated by aMAPK atSerine-505. When phosphorylation is coupled with an influx of calcium ions, cPLA2 becomes stimulated and can translocate to the membrane to begincatalysis.[27]

Phosphorylation of cPLA2 may be a result of ligand binding to receptors, including:

In the case of an inflammation, the application of glucocorticoids up-regulate (mediated at the gene level) the production of the proteinlipocortin which may inhibit cPLA2 and reduce the inflammatory response.

Relevance in neurological disorders

[edit]

In normal brain cells, PLA2 regulation accounts for a balance betweenarachidonic acid's conversion into proinflammatory mediators and its reincorporation into the membrane. In the absence of strict regulation of PLA2 activity, a disproportionate amount of proinflammatory mediators are produced. The resulting inducedoxidative stress and neuroinflammation is analogous to neurological diseases such asAlzheimer's disease,epilepsy,multiple sclerosis,ischemia.Lysophospholipids are another class of molecules released from the membrane that are upstream predecessors ofplatelet activating factors (PAF). Abnormal levels of potent PAF are also associated with neurological damage. An optimalenzyme inhibitor would specifically target PLA2 activity on neural cell membranes already underoxidative stress and potentinflammation. Thus, specific inhibitors of brain PLA2 could be a pharmaceutical approach to treatment of several disorders associated with neural trauma.[29]

Increase in phospholipase A2 activity is anacute-phase reaction that rises during inflammation, which is also seen to be exponentially higher in low backdisc herniations compared torheumatoid arthritis.[citation needed] It is a mixture of inflammation andsubstance P that are responsible for pain.[citation needed]

Increased phospholipase A2 has also been associated with neuropsychiatric disorders such asschizophrenia andpervasive developmental disorders (such asautism), though the mechanisms involved are not known.[30][31]

Isozymes

[edit]

Human phospholipase A2isozymes include:

In addition, the following human proteins contain the phospholipase A2domain:

See also

[edit]

References

[edit]
  1. ^Dennis EA (May 1994)."Diversity of group types, regulation, and function of phospholipase A2".The Journal of Biological Chemistry.269 (18):13057–13060.doi:10.1016/S0021-9258(17)36794-7.PMID 8175726.
  2. ^Nicolas JP, Lin Y, Lambeau G, Ghomashchi F, Lazdunski M, Gelb MH (March 1997)."Localization of structural elements of bee venom phospholipase A2 involved in N-type receptor binding and neurotoxicity".The Journal of Biological Chemistry.272 (11):7173–7181.doi:10.1074/jbc.272.11.7173.PMID 9054413.
  3. ^Argiolas A, Pisano JJ (November 1983)."Facilitation of phospholipase A2 activity by mastoparans, a new class of mast cell degranulating peptides from wasp venom".The Journal of Biological Chemistry.258 (22):13697–13702.doi:10.1016/S0021-9258(17)43973-1.PMID 6643447.
  4. ^Cox M, Nelson DR, Lehninger AL (2005).Lehninger principles of biochemistry (4th ed.). San Francisco: W.H. Freeman.ISBN 0-7167-4339-6.
  5. ^Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA (2022-06-10)."The chemistry of snake venom and its medicinal potential".Nature Reviews. Chemistry.6 (7):451–469.doi:10.1038/s41570-022-00393-7.PMC 9185726.PMID 35702592.
  6. ^Sato H, Taketomi Y, Isogai Y, Miki Y, Yamamoto K, Masuda S, et al. (May 2010)."Group III secreted phospholipase A2 regulates epididymal sperm maturation and fertility in mice".The Journal of Clinical Investigation.120 (5):1400–1414.doi:10.1172/JCI40493.PMC 2860917.PMID 20424323.
  7. ^Escoffier J, Jemel I, Tanemoto A, Taketomi Y, Payre C, Coatrieux C, et al. (May 2010)."Group X phospholipase A2 is released during sperm acrosome reaction and controls fertility outcome in mice".The Journal of Clinical Investigation.120 (5):1415–1428.doi:10.1172/JCI40494.PMC 2860919.PMID 20424324.
  8. ^Mallat Z, Lambeau G, Tedgui A (November 2010)."Lipoprotein-associated and secreted phospholipases A2₂ in cardiovascular disease: roles as biological effectors and biomarkers".Circulation.122 (21):2183–2200.doi:10.1161/CIRCULATIONAHA.110.936393.PMID 21098459.
  9. ^De Luca D, Minucci A, Cogo P, Capoluongo ED, Conti G, Pietrini D, et al. (January 2011). "Secretory phospholipase AA2 pathway during pediatric acute respiratory distress syndrome: a preliminary study".Pediatric Critical Care Medicine.12 (1):e20 –e24.doi:10.1097/PCC.0b013e3181dbe95e.PMID 20351613.S2CID 36962872.
  10. ^Ezzeddini R, Darabi M, Ghasemi B, Jabbari Moghaddam Y, Jabbari Y, Abdollahi S, et al. (April 2012). "Circulating phospholipase-A2 activity in obstructive sleep apnea and recurrent tonsillitis".International Journal of Pediatric Otorhinolaryngology.76 (4):471–474.doi:10.1016/j.ijporl.2011.12.026.PMID 22297210.
  11. ^Henderson WR, Oslund RC, Bollinger JG, Ye X, Tien YT, Xue J, Gelb MH (August 2011)."Blockade of human group X secreted phospholipase A2 (GX-sPLA2)-induced airway inflammation and hyperresponsiveness in a mouse asthma model by a selective GX-sPLA2 inhibitor".The Journal of Biological Chemistry.286 (32):28049–28055.doi:10.1074/jbc.M111.235812.PMC 3151050.PMID 21652694.
  12. ^Wei Y, Epstein SP, Fukuoka S, Birmingham NP, Li XM, Asbell PA (July 2011)."sPLA2-IIa amplifies ocular surface inflammation in the experimental dry eye (DE) BALB/c mouse model".Investigative Ophthalmology & Visual Science.52 (7):4780–4788.doi:10.1167/iovs.10-6350.PMC 3175946.PMID 21519031.
  13. ^Chalbot S, Zetterberg H, Blennow K, Fladby T, Andreasen N, Grundke-Iqbal I, Iqbal K (January 2011)."Blood-cerebrospinal fluid barrier permeability in Alzheimer's disease".Journal of Alzheimer's Disease.25 (3):505–515.doi:10.3233/JAD-2011-101959.PMC 3139450.PMID 21471645.
  14. ^Aljakna A, Choi S, Savage H, Hageman Blair R, Gu T, Svenson KL, et al. (August 2012)."Pla2g12b and Hpn are genes identified by mouse ENU mutagenesis that affect HDL cholesterol".PLOS ONE.7 (8) e43139.Bibcode:2012PLoSO...743139A.doi:10.1371/journal.pone.0043139.PMC 3422231.PMID 22912808.
  15. ^Guan M, Qu L, Tan W, Chen L, Wong CW (February 2011). "Hepatocyte nuclear factor-4 α regulates liver triglyceride metabolism in part through secreted phospholipase AA2 GXIIB".Hepatology.53 (2):458–466.doi:10.1002/hep.24066.PMID 21274867.
  16. ^Li X, Jiang H, Qu L, Yao W, Cai H, Chen L, Peng T (January 2014)."Hepatocyte nuclear factor 4α and downstream secreted phospholipase A2 GXIIB regulate production of infectious hepatitis C virus".Journal of Virology.88 (1):612–627.doi:10.1128/JVI.02068-13.PMC 3911757.PMID 24173221.
  17. ^Six DA, Dennis EA (October 2000). "The expanding superfamily of phospholipase A(2) enzymes: classification and characterization".Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids.1488 (1–2):1–19.doi:10.1016/S1388-1981(00)00105-0.PMID 11080672.S2CID 23717374.
  18. ^Wilensky RL, Shi Y, Mohler ER, Hamamdzic D, Burgert ME, Li J, et al. (October 2008)."Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development".Nature Medicine.14 (10):1059–1066.doi:10.1038/nm.1870.PMC 2885134.PMID 18806801.
  19. ^Tellis CC, Tselepis AD (May 2009). "The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma".Biochimica et Biophysica Acta.1791 (5):327–338.doi:10.1016/j.bbalip.2009.02.015.PMID 19272461.
  20. ^Castro-Amorim, Juliana; Novo de Oliveira, Ana; Da Silva, Saulo Luís; Soares, Andreimar M.; Mukherjee, Ashis K.; Ramos, Maria João; Fernandes, Pedro A. (2023-04-27)."Catalytically Active Snake Venom PLA2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction".Journal of Medicinal Chemistry.66 (8):5364–5376.doi:10.1021/acs.jmedchem.3c00097.ISSN 0022-2623.PMC 10150362.PMID 37018514.
  21. ^Castro-Amorim, Juliana; Pinto, Alexandre V.; Mukherjee, Ashis K.; Ramos, Maria J.; Fernandes, Pedro A. (2025)."Beyond Fang's fury: a computational study of the enzyme–membrane interaction and catalytic pathway of the snake venom phospholipase A 2 toxin".Chemical Science.16 (4):1974–1985.doi:10.1039/D4SC06511E.ISSN 2041-6520.PMC 11694569.PMID 39759936.
  22. ^Pinto, Alexandre V.; Ferreira, Pedro; Cunha, Ana V.; Havenith, Remco W. A.; Magalhães, Alexandre L.; Ramos, Maria J.; Fernandes, Pedro A. (2024)."Revisiting the reaction pathways for phospholipid hydrolysis catalyzed by phospholipase A2 with QM/MM methods".Chemical Science.15 (25):9793–9805.doi:10.1039/D4SC02315C.ISSN 2041-6520.PMC 11206408.PMID 38939148.
  23. ^abBerg OG, Gelb MH, Tsai MD, Jain MK (September 2001). "Interfacial enzymology: the secreted phospholipase A(2)-paradigm".Chemical Reviews.101 (9):2613–2654.doi:10.1021/cr990139w.PMID 11749391.See page 2640
  24. ^PDB:1FXF​;Pan YH, Epstein TM, Jain MK, Bahnson BJ (January 2001). "Five coplanar anion binding sites on one face of phospholipase A2: relationship to interface binding".Biochemistry.40 (3):609–617.doi:10.1021/bi002514g.PMID 11170377.
  25. ^Choi SH, Sakamoto T, Fukutomi O, Inagaki N, Matsuura N, Nagai H, Koda A (September 1989)."Pharmacological study of phospholipase A2-induced histamine release from rat peritoneal mast cells".Journal of Pharmacobio-Dynamics.12 (9):517–522.doi:10.1248/bpb1978.12.517.PMID 2482349.
  26. ^Morita Y, Aida N, Miyamoto T (August 1983). "Role of phospholipase A2 activation in histamine release from human basophils".Allergy.38 (6):413–418.doi:10.1111/j.1398-9995.1983.tb05084.x.PMID 6194706.S2CID 42671016.
  27. ^Leslie CC (July 1997)."Properties and regulation of cytosolic phospholipase A2".The Journal of Biological Chemistry.272 (27):16709–16712.doi:10.1074/jbc.272.27.16709.PMID 9201969.
  28. ^abcdeBoron WF (2003).Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. p. 103.ISBN 1-4160-2328-3.
  29. ^Farooqui AA, Ong WY, Horrocks LA (September 2006). "Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders".Pharmacological Reviews.58 (3):591–620.doi:10.1124/pr.58.3.7.PMID 16968951.S2CID 6137443.
  30. ^Bell JG, MacKinlay EE, Dick JR, MacDonald DJ, Boyle RM, Glen AC (October 2004). "Essential fatty acids and phospholipase A2 in autistic spectrum disorders".Prostaglandins, Leukotrienes, and Essential Fatty Acids.71 (4):201–204.doi:10.1016/j.plefa.2004.03.008.PMID 15301788.
  31. ^Law MH, Cotton RG, Berger GE (June 2006). "The role of phospholipases A2 in schizophrenia".Molecular Psychiatry.11 (6):547–556.doi:10.1038/sj.mp.4001819.PMID 16585943.

External links

[edit]
Precursor
Prostanoids
Leukotrienes
Ungrouped
3.1.1:Carboxylic
ester hydrolases
3.1.2:Thioesterase
3.1.3:Phosphatase
3.1.4:
Phosphodiesterase
3.1.6:Sulfatase
Nuclease (includes
deoxyribonuclease
andribonuclease)
3.1.11-16:
Exonuclease
Exodeoxyribonuclease
Exoribonuclease
3.1.21-31:
Endonuclease
Endodeoxyribonuclease
Endoribonuclease
either deoxy- or ribo-    
Retrieved from "https://en.wikipedia.org/w/index.php?title=Phospholipase_A2&oldid=1314871192"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp