Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Phosphatidylinositol

From Wikipedia, the free encyclopedia
(Redirected fromPhosphoinositides)
Signaling molecule
This articlemay be too technical for most readers to understand. Pleasehelp improve it tomake it understandable to non-experts, without removing the technical details.(February 2024) (Learn how and when to remove this message)
Phosphatidylinositol
Depicting the phosphatidylinositol molecule with an overview of different segregated components; Inositol, Phosphate, Glycerol-backbone, sn-1 acyl chain, sn-2 acyl chain.[1]
Names
IUPAC name
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadecanoyloxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
Other names
  • PI
  • PtdIns
Identifiers
ChEBI
DrugBank
Properties
C47H83O13P
Molar mass887,104 g/mol, neutral with fatty acid composition - 18:0, 20:4
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Phosphatidylinositol orinositol phospholipid is abiomolecule. It was initially called "inosite" when it was discovered byLéon Maquenne andJohann Joseph von Scherer in the late 19th century. It was discovered inbacteria but later also found ineukaryotes, and was found to be asignaling molecule.

The biomolecule can exist in 9 different isomers. It is alipid which contains aphosphate group, twofatty acid chains, and oneinositol sugar molecule. Typically, the phosphate group has a negative charge (at physiologicalpH values). As a result, the molecule isamphiphilic.

The production of the molecule is limited to theendoplasmic reticulum.

History of phospatidylinositol

[edit]

Phosphatidylinositol (PI) and its derivatives have a rich history dating back to their discovery by Johann Joseph von Scherer[2] andLéon Maquenne[3][4][5] in the late 19th century. Initially known as "inosite" based on its sweet taste, the isolation and characterization of inositol laid the groundwork for understanding itscyclohexanol structure. Théodore Posternak's work further elucidated the configuration of myo-inositol,[6][7][8] the principal form found in eukaryotic tissues. The study of inositolisomers and their physiological functions has revealed a complex interplay in various organisms.

The esterified presence ofinositol inlipids, particularly PI, was first observed inbacteria and later confirmed ineukaryotic organisms by researchers likeClinton Ballou[9][10] and Dan Brown.[11] Their pioneering work established the structure of PI and itsphosphorylated forms, shedding light on their roles assignaling molecules. Despite the complexity of inositol nomenclature and isomerism, modern research has greatly advanced the understanding of their diverse functions in cellular physiology andsignaling pathways.

The discovery of PI and its derivatives, along with their intricate roles in cellular signaling, marks a significant chapter in the field ofbiochemistry. From early investigations into inositol's structure to the identification of its various isomers and their physiological functions, the study of inositol compounds continues to uncover new insights intocellular processes.[12]

Structure and chemistry

[edit]

Phosphatidylinositol (PI), also known as inositol phospholipid, is a lipid composed of a phosphate group, two fatty acid chains, and one inositol molecule. It belongs to the class of phosphatidylglycerides and is typically found as a minor component on the cytosolic side ofeukaryotic cell membranes. The phosphate group imparts a negative charge to the molecules at physiological pH.[13]

PI can exist in nine different forms, myo-, scyllo-, muco-, epi-, neo-, allo-, D-chiro-, L-chiro-, and cis-inositol. Theseisomers are common in biology and have many functions, for example taste sensory, regulating phosphate levels,metabolic flux, transcription, mRNA export and translation, insulin signaling, embryonic development and stress response. Cis-inositol is the only isomer not found naturally in nature.[14]

PI exhibits anamphiphilic nature, with both polar and non-polar regions, due to its glycerophospholipid structure containing a glycerol backbone, two non-polar fatty acid tails, and a phosphate group substituted with an inositol polar head group.[15]

Phosphoinositides

[edit]

Phosphorylated forms of phosphatidylinositol (PI) are called phosphoinositides and play important roles inlipid signaling,cell signaling andmembrane trafficking. The inositol ring can bephosphorylated by a variety ofkinases on the three, four and five hydroxyl groups in seven different combinations. However, the two and six hydroxyl groups are typically not phosphorylated due tosteric hindrance.[16]

All seven variations of the following phosphoinositides have been found in animals:

Phosphatidylinositol monophosphates:

Phosphatidylinositol bisphosphates:

Phosphatidylinositol trisphosphate:

These phosphoinositides are also found in plant cells, with the exception of PIP3.[17][18][19]

Hydrolysis

[edit]

The significance of phosphatidylinositol (PI) metabolism lies in its role as a potential transducing mechanism, evident from studies showing hormone and neurotransmitter-induced hydrolysis of PI. The hydrolysis starts with the enzyme PI 4-kinase alpha (PI4Kα) converting PI into PI 4-phosphate (PI4P), which is then converted into PI (4,5) biphosphate (PI(4,5)P2) by the enzyme PI 4-phosphate-5-kinase (PI4P5K). PI(4,5)P2 is then hydrolysed by phospholipase C (PLC) and forms the second messengers, inositol (1,4,5) triphosphate (IP3) and diacylglycerol (DG). DG is then phosphorylated to phosphatidic acid (PA) by DG kinase (DGK). PA is also directly produced from phosphatidylcholine (PC) by phospholipase D (PLD). Lipid transfer proteins facilitate the exchange of PI and PA between membranes, ensuring its availability for receptor mechanisms on the plasma membrane, even in organelles likemitochondria incapable of PI synthesis.[20][21][22]

Depicting the process of hydrolysis and biosynthesis at the plasma membrane and Endoplasmic Reticulum (ER). Describing the cycle of PI, with respective enzymatic processes and reactions.[20]

Biosynthesis

[edit]

Thesynthesis of Phosphatidylinositol (PI) is limited to theEndoplasmatic Reticulum (ER), which is the largest membrane component of the cell.[23] This site also contributes the synthesis to the majority of phospholipids, namelyphosphatidylcholine (PC),phosphatidylethanolamine (PE),phosphatidylserine (PS) andtriacylglycerol (TG).[24] The synthesis involves a series of enzymatic reactions.

The biosynthesis and phosphorylation of PI is mainly confined to thecytosolic facing surface of organelles by already residentialkinases, but not at the ER specifically.De novo PI synthesis of PI starts with anacylated process ofGlyceraldehyde-3-phosphate (G-3-P) by GPAT enzymes at thesn-1 acyl chain position.[25] The process is then followed by a second acylation with LPAAT1, LPAAT2 and LPAAT3, LPAAT enzymes, at thesn-2 acyl chain position.[26] This double step process acylates G-3-P tophosphatidic acid (PA).

PA is converted into the intermediate CDP-diacylglycerol (CDP-DAG) by an enzyme called CDP-diacylglycerol synthase. Two genes,CDS1 andCDS2, encode different isoforms of CDP-diacylglycerol synthase. In the final enzymatic process, CDP-DAG and inositol are used as substrates by the enzymephosphatidylinositol synthase and converted into PI andcytidine monophosphate (CMP).[27][28]

References

[edit]
  1. ^Blunsom, Nicholas J.; Cockcroft, Shamshad (2020)."Phosphatidylinositol synthesis at the endoplasmic reticulum".Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids.1865 (1) 158471.doi:10.1016/j.bbalip.2019.05.015.PMID 31173893.S2CID 182948709.
  2. ^Scherer, Johann J. (1850). "Uber eine neue aus dem Muskelfleisch gewonnene Zuckerart".Liebigs Ann. Chem.73 (3): 322.doi:10.1002/jlac.18500730303.
  3. ^Maquenne, Léon (1887). "Préparation, proprietés et constitution se l'inosite".Comptes rendus hebdomadaires des séances de l'Académie des Sciences.104: 225-227.
  4. ^Maquenne, Léon (1887). "Sur les propriétés de l'inosite".Comptes rendus hebdomadaires des séances de l'Académie des Sciences.104: 297-299.
  5. ^Maquenne, Léon (1887). "Sur quelques dérivés de l'inosite".Comptes rendus hebdomadaires des séances de l'Académie des Sciences.104: 1719-1722.
  6. ^Posternak, Théodore (1942). "Recherches dans la série des cyclites VI. Sut la configuration de la méso-inosite, de la scyllite et d'un inosose obtenu par voie biochimique (scyllo-ms-inosose)".Helv. Chim. Acta.25 (4): 746-752.doi:10.1002/hlca.19420250410.
  7. ^Dangschat, Gerda (1942)."Acetonierung und Konfiguration des Meso-inosits".Die Naturwissenschaften (in German).30 (9–10):146–147.Bibcode:1942NW.....30..146D.doi:10.1007/BF01475387.ISSN 0028-1042.S2CID 38695213.
  8. ^Falkenburger, Björn H.; Jensen, Jill B.; Dickson, Eamonn J.; Suh, Byung-Chang; Hille, Bertil (2010)."SYMPOSIUM REVIEW: Phosphoinositides: lipid regulators of membrane proteins: Phosphoinositides instruct membrane proteins".The Journal of Physiology.588 (17):3179–3185.doi:10.1113/jphysiol.2010.192153.PMC 2976013.PMID 20519312.
  9. ^Pizer, Frances Lane; Ballou, Clinton E. (1959). "Studies on myo-Inositol Phosphates of Natural Origin".Journal of the American Chemical Society.81 (4):915–921.Bibcode:1959JAChS..81..915P.doi:10.1021/ja01513a040.ISSN 0002-7863.
  10. ^Ballou, Clinton E.; Pizer, Lewis I. (1959). "SYNTHESIS OF AN OPTICALLY ACTIVE myo-INOSITOL 1-PHOSPHATE".Journal of the American Chemical Society.81 (17): 4745.Bibcode:1959JAChS..81.4745B.doi:10.1021/ja01526a074.ISSN 0002-7863.
  11. ^Brown, D. M.; Clark, B. F. C.; Letters, R. (1961)."732. Phospholipids. Part VII. The structure of a monophosphoinositide".Journal of the Chemical Society (Resumed):3774–3779.doi:10.1039/jr9610003774.ISSN 0368-1769.
  12. ^Irvine, Robin F. (2016)."A short history of inositol lipids".Journal of Lipid Research.57 (11):1987–1994.doi:10.1194/jlr.R071712.PMC 5087877.PMID 27623846.
  13. ^Kooijman, Edgar E.; King, Katrice E.; Gangoda, Mahinda; Gericke, Arne (2009-10-13)."Ionization Properties of Phosphatidylinositol Polyphosphates in Mixed Model Membranes".Biochemistry.48 (40):9360–9371.doi:10.1021/bi9008616.ISSN 0006-2960.PMID 19725516.
  14. ^Thomas, Mark P.; Mills, Stephen J.; Potter, Barry V. L. (2016-01-26)."The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo -Inositol Chemistry)".Angewandte Chemie International Edition.55 (5):1614–1650.Bibcode:2016ACIE...55.1614T.doi:10.1002/anie.201502227.ISSN 1433-7851.PMC 5156312.PMID 26694856.
  15. ^Hoener, Marius C.; Brodbeck, Urs (1992)."Phosphatidylinositol-glycan-specific phospholipase D is an amphiphilic glycoprotein that in serum is associated with high-density lipoproteins".European Journal of Biochemistry.206 (3):747–757.doi:10.1111/j.1432-1033.1992.tb16981.x.ISSN 0014-2956.PMID 1606959.
  16. ^Falkenburger, Björn H.; Jensen, Jill B.; Dickson, Eamonn J.; Suh, Byung-Chang; Hille, Bertil (2010-09-01)."SYMPOSIUM REVIEW: Phosphoinositides: lipid regulators of membrane proteins: Phosphoinositides instruct membrane proteins".The Journal of Physiology.588 (17):3179–3185.doi:10.1113/jphysiol.2010.192153.PMC 2976013.PMID 20519312.
  17. ^Muller-Roeber B, Pical C (2002).Inositol Phospholipid Metabolism in Arabidopsis. Characterized and Putative Isoforms of Inositol Phospholipid Kinase and Phosphoinositide-Specific Phospholipase C.
  18. ^Falkenburger, Björn H.; Jensen, Jill B.; Dickson, Eamonn J.; Suh, Byung-Chang; Hille, Bertil (2010-09-01)."SYMPOSIUM REVIEW: Phosphoinositides: lipid regulators of membrane proteins: Phosphoinositides instruct membrane proteins".The Journal of Physiology.588 (17):3179–3185.doi:10.1113/jphysiol.2010.192153.PMC 2976013.PMID 20519312.
  19. ^Tabaei, Seyed R.; Guo, Feng; Rutaganira, Florentine U.; Vafaei, Setareh; Choong, Ingrid; Shokat, Kevan M.; Glenn, Jeffrey S.; Cho, Nam-Joon (2016-05-17)."Multistep Compositional Remodeling of Supported Lipid Membranes by Interfacially Active Phosphatidylinositol Kinases".Analytical Chemistry.88 (10):5042–5045.doi:10.1021/acs.analchem.6b01293.ISSN 0003-2700.PMC 5291064.PMID 27118725.
  20. ^abBlunsom, Nicholas J.; Cockcroft, Shamshad (2020)."Phosphatidylinositol synthesis at the endoplasmic reticulum".Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids.1865 (1): 158471.doi:10.1016/j.bbalip.2019.05.015.PMID 31173893.S2CID 182948709.
  21. ^Berridge, Michael J. (1981)."Phosphatidyldmositol hydrolysis: A multifunctional transducing mechanism".Molecular and Cellular Endocrinology.24 (2):115–140.doi:10.1016/0303-7207(81)90055-1.PMID 6117490.S2CID 27566538.
  22. ^Ivanova, Adelina; Atakpa-Adaji, Peace (2023)."Phosphatidylinositol 4,5-bisphosphate and calcium at ER-PM junctions — Complex interplay of simple messengers".Biochimica et Biophysica Acta (BBA) - Molecular Cell Research.1870 (6) 119475.doi:10.1016/j.bbamcr.2023.119475.PMID 37098393.
  23. ^Schink, Kay O.; Tan, Kia-Wee; Stenmark, Harald (2016)."Phosphoinositides in Control of Membrane Dynamics".Annual Review of Cell and Developmental Biology.32 (1):143–171.doi:10.1146/annurev-cellbio-111315-125349.ISSN 1081-0706.PMID 27576122.
  24. ^Choy, Christopher H.; Han, Bong-Kwan; Botelho, Roberto J. (2017)."Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box".BioEssays.39 (12) 1700121.doi:10.1002/bies.201700121.ISSN 0265-9247.PMID 28977683.S2CID 22778474.
  25. ^Ridgway, Neale D. (2016),"Phospholipid Synthesis in Mammalian Cells",Biochemistry of Lipids, Lipoproteins and Membranes, Elsevier, pp. 209–236,doi:10.1016/b978-0-444-63438-2.00007-9,ISBN 978-0-444-63438-2,S2CID 89265741, retrieved2024-02-15
  26. ^Chatterjee, Soumya Deep; Zhou, Juan; Dasgupta, Rubin; Cramer-Blok, Anneloes; Timmer, Monika; van der Stelt, Mario; Ubbink, Marcellus (2021)."Protein Dynamics Influence the Enzymatic Activity of Phospholipase A/Acyltransferases 3 and 4".Biochemistry.60 (15):1178–1190.doi:10.1021/acs.biochem.0c00974.ISSN 0006-2960.PMC 8154263.PMID 33749246.
  27. ^Bunney, Tom D.; Katan, Matilda (2011)."PLC regulation: emerging pictures for molecular mechanisms".Trends in Biochemical Sciences.36 (2):88–96.doi:10.1016/j.tibs.2010.08.003.PMID 20870410.
  28. ^Ivanova, Adelina; Atakpa-Adaji, Peace (2023)."Phosphatidylinositol 4,5-bisphosphate and calcium at ER-PM junctions — Complex interplay of simple messengers".Biochimica et Biophysica Acta (BBA) - Molecular Cell Research.1870 (6) 119475.doi:10.1016/j.bbamcr.2023.119475.PMID 37098393.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Phosphatidylinositol&oldid=1315972263#Phosphoinositides"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp