Thephases of clinical research are the stages in which scientists conduct experiments with ahealth intervention to obtain sufficient evidence for a process considered effective as amedical treatment.[1][2] Fordrug development, the clinical phases start with testing fordrug safety in a fewhuman subjects, then expand to many study participants (potentially tens of thousands) to determine if the treatment is effective.[1] Clinical research is conducted on drug candidates,vaccine candidates, newmedical devices, and newdiagnostic assays.
Clinical trials testing potential medical products are commonly classified into four phases. The drug development process will normally proceed through all four phases over many years.[1] When expressed specifically, a clinical trial phase is capitalized both in name andRoman numeral, such as "Phase I" clinical trial.[1][failed verification]
If the drug successfully passes through Phases I, II, and III, it will usually be approved by the national regulatory authority for use in the general population.[1] Phase IV trials are 'post-marketing' or 'surveillance' studies conducted to monitor safety over several years.[1]
| Phase | Primary goal | Dose | Patient monitor | Typical number of participants | Success rate[3] | Notes |
|---|---|---|---|---|---|---|
| Preclinical | Testing of drug in non-human subjects to gatherefficacy,toxicity andpharmacokinetic information | Unrestricted | Scientific researcher | No human subjects,in vitro andin vivo only | Includes testing inmodel organisms. Humanimmortalized cell lines and other human tissues may also be used. | |
| Phase 0 | Pharmacokinetics; particularly oral bioavailability and half-life of the drug | Small, subtherapeutic | Clinical researcher | 10 people | Often skipped for Phase I. | |
| Phase I | Dose-ranging on healthy volunteers for safety | Often subtherapeutic, but with ascending doses | Clinical researcher | 20–100 normal healthy volunteers (or cancer patients for cancer drugs) | Approx. 52% | Determines whether drug is safe to check for efficacy. |
| Phase II | Testing of drug on participants to assess efficacy and side effects | Therapeutic dose | Clinical researcher | 100–300 participants with a specific disease | Approx. 28.9% | Determines whether drug can have any efficacy; at this point, the drug is not presumed to have any therapeutic effect |
| Phase III | Testing of drug on participants to assess efficacy, effectiveness and safety | Therapeutic dose | Clinical researcher and personal physician | 300–3,000 people with a specific disease | 57.8% | Determines a drug's therapeutic effect; at this point, the drug is presumed to have some effect |
| Phase IV | Post marketing surveillance in public | Therapeutic dose | Personal physician | Anyone seeking treatment from a physician | N/A | Monitor long-term effects |
Before clinical trials are undertaken for a candidate drug, vaccine, medical device, or diagnostic assay, the product candidate is tested extensively inpreclinical studies.[1] Such studies involvein vitro (test tube orcell culture) andin vivo (animal model) experiments using wide-ranging doses of the study agent to obtain preliminaryefficacy,toxicity andpharmacokinetic information. Such tests assist the developer to decide whether a drug candidate has scientific merit for further development as aninvestigational new drug.[1]
Phase 0 is a designation for optional exploratory trials, originally introduced by the United StatesFood and Drug Administration's (FDA) 2006 Guidance on ExploratoryInvestigational New Drug (IND) Studies, but now generally adopted as standard practice.[4][5] Phase 0 trials are also known as humanmicrodosing studies and are designed to speed up the development of promising drugs orimaging agents by establishing very early on whether the drug or agent behaves in human subjects as was expected from preclinical studies. Distinctive features of Phase 0 trials include the administration of single subtherapeutic doses of the study drug to a small number of subjects (10 to 15) to gather preliminary data on the agent'spharmacokinetics (what the body does to the drugs).[6]
A Phase 0 study gives no data on safety or efficacy, being by definition a dose too low to cause any therapeutic effect. Drug development companies carry out Phase 0 studies to rank drug candidates to decide which has the bestpharmacokinetic parameters in humans to take forward into further development. They enable go/no-go decisions to be based on relevant human models instead of relying on sometimes inconsistent animal data.[7]
Phase I trials were formerly referred to as "first-in-man studies" but the field generally moved to thegender-neutral language phrase "first-in-humans" in the 1990s;[8] these trials are the first stage of testing in human subjects.[9] They are designed to test the safety, side effects, best dose, and formulation method for the drug.[10] Phase I trials are not randomized, and thus are vulnerable toselection bias.[11]
Normally, a small group of 20–100 healthy volunteers will be recruited.[12][9] These trials are often conducted in a clinical trial clinic, where the subject can be observed by full-time staff. These clinical trial clinics are often run bycontract research organization (CROs) who conduct these studies on behalf ofpharmaceutical companies or other research investigators.[citation needed]
The subject who receives the drug is usually observed until severalhalf-lives of the drug have passed. This phase is designed to assess the safety (pharmacovigilance), tolerability,pharmacokinetics, andpharmacodynamics of a drug. Phase I trials normally includedose-ranging, also called dose escalation studies, so that the best and safest dose can be found and to discover the point at which a compound is too poisonous to administer.[13] The tested range of doses will usually be a fraction[quantify] of the dose that caused harm inanimal testing.
Phase I trials most often include healthy volunteers. However, there are some circumstances when clinical patients are used, such as patients who haveterminal cancer or HIV and the treatment is likely to make healthy individuals ill. These studies are usually conducted in tightly controlled clinics called Central Pharmacological Units, where participants receive 24-hour medical attention and oversight. In addition to the previously mentioned unhealthy individuals, "patients who have typically already tried and failed to improve on the existing standard therapies"[14] may also participate in Phase I trials. Volunteers are paid a variable inconvenience fee for their time spent in the volunteer center.
Before beginning a Phase I trial, the sponsor must submit anInvestigational New Drug application to the FDA detailing the preliminary data on the drug gathered from cellular models and animal studies.[1]
Phase I trials can be further divided:
Single ascending dose (Phase Ia): In single ascending dose studies, small groups of subjects are given a single dose of the drug while they are observed and tested for a period of time to confirm safety.[9][15] Typically, a small number of participants, usually three, are entered sequentially at a particular dose.[14] If they do not exhibit anyadverse side effects, and the pharmacokinetic data are roughly in line with predicted safe values, the dose is escalated, and a new group of subjects is then given a higher dose.[citation needed]
If unacceptable toxicity is observed in any of the three participants, an additional number of participants, usually three, are treated at the same dose.[14] This is continued until pre-calculated pharmacokinetic safety levels are reached, or intolerable side effects start showing up (at which point the drug is said to have reached themaximum tolerated dose (MTD)). If an additional unacceptable toxicity is observed, then the dose escalation is terminated and that dose, or perhaps the previous dose, is declared to be the maximally tolerated dose. This particular design assumes that the maximally tolerated dose occurs when approximately one-third of the participants experience unacceptable toxicity. Variations of this design exist, but most are similar.[14]
Multiple ascending dose (Phase Ib): Multiple ascending dose studies investigate the pharmacokinetics and pharmacodynamics of multiple doses of the drug, looking at safety and tolerability. In these studies, a group of patients receives multiple low doses of the drug, while samples (of blood, and other fluids) are collected at various time points and analyzed to acquire information on how the drug is processed within the body. The dose is subsequently escalated for further groups, up to a predetermined level.[9][15]
A short trial designed to investigate any differences in absorption of the drug by the body, caused by eating before the drug is given. These studies are usually run as acrossover study, with volunteers being given two identical doses of the drug whilefasted, and after being fed.
Once a dose or range of doses is determined, the next goal is to evaluate whether the drug has anybiological activity or effect.[14] Phase II trials are performed on larger groups (50–300 individuals) and are designed to assess how well the drug works, as well as to continue Phase I safety assessments in a larger group of volunteers and patients.Genetic testing is common, particularly when there is evidence of variation in metabolic rate.[14] When the development process for a new drug fails, this usually occurs during Phase II trials when the drug is discovered not to work as planned, or to have toxic effects.[16]
Phase II studies are sometimes divided into Phase IIa and Phase IIb. There is no formal definition for these two sub-categories, but generally:
Some Phase II trials are designed ascase series, demonstrating a drug's safety and activity in a selected group of participants. Other Phase II trials are designed asrandomized controlled trials, where some patients receive the drug/device and others receiveplacebo/standard treatment. Randomized Phase II trials have far fewer patients than randomized Phase III trials.[1]
In the first stage, the investigator attempts to rule out drugs that have no or little biologic activity. For example, the researcher may specify that a drug must have some minimal level of activity, say, in 20% of participants. If the estimated activity level is less than 20%, the researcher chooses not to consider this drug further, at least not at that maximally tolerated dose. If the estimated activity level exceeds 20%, the researcher will add more participants to get a better estimate of the response rate. A typical study for ruling out a 20% or lower response rate enters 14 participants. If no response is observed in the first 14 participants, the drug is considered not likely to have a 20% or higher activity level. The number of additional participants added depends on the degree of precision desired, but ranges from 10 to 20. Thus, a typical cancer phase II study might include fewer than 30 people to estimate the response rate.[14]
When a study assesses efficacy, it is looking at whether the drug given in the specific manner described in the study is able to influence an outcome of interest (e.g. tumor size) in the chosen population (e.g. cancer patients with no other ongoing diseases). When a study is assessing effectiveness, it is determining whether a treatment will influence the disease. In an effectiveness study, it is essential that participants are treated as they would be when the treatment is prescribed in actual practice. That would mean that there should be no aspects of the study designed to increase compliance above those that would occur in routine clinical practice. The outcomes in effectiveness studies are also more generally applicable than in most efficacy studies (for example does the patient feel better, come to the hospital less or live longer in effectiveness studies as opposed to better test scores or lower cell counts in efficacy studies). There is usually less rigid control of the type of participant to be included in effectiveness studies than in efficacy studies, as the researchers are interested in whether the drug will have a broad effect in the population of patients with the disease.[16]
Phase I trials historically have experienced the lowest success, having about a 66% failure rate due mainly toadverse effects and other toxicity concerns.[16] A 2022 review found that about 90% of drug candidates fail over the course of Phases I-III, mainly due to absence of therapeutic efficacy, toxicity, non-specific drug properties, poor strategic planning, and recognition that the compound will not succeed commercially.[16]
This phase is designed to assess the effectiveness of the new intervention and, thereby, its value in clinical practice.[14] Phase III studies are randomized controlledmulticenter trials on large patient groups (300–3,000 or more depending upon the disease/medical condition studied) and are aimed at being the definitive assessment of how effective the drug is, in comparison with current 'gold standard' treatment. Because of their size and comparatively long duration, Phase III trials are the most expensive, time-consuming and difficult trials to design and run, especially in therapies forchronic medical conditions. Phase III trials of chronic conditions or diseases often have a short follow-up period for evaluation, relative to the period of time the intervention might be used in practice.[14]
It is common practice that certain Phase III trials will continue while the regulatory submission is pending at the appropriate regulatory agency. This allows patients to continue to receive possibly lifesaving drugs until the drug can be obtained by purchase. Other reasons for performing trials at this stage include attempts by the sponsor at "label expansion" (to show the drug works for additional types of patients/diseases beyond the original use for which the drug was approved for marketing), to obtain additional safety data, or to support marketing claims for the drug. Studies in this phase are by some companies categorized as "Phase IIIB studies."[18]
While not required in all cases, it is typically expected that there be at least two successful Phase III trials, demonstrating a drug's safety and efficacy, to obtain approval from the appropriate regulatory agencies such asFDA (US), or theEMA (European Union).
Once a drug has proved satisfactory after Phase III trials, the trial results are usually combined into a large document containing a comprehensive description of the methods and results of human and animal studies, manufacturing procedures, formulation details, and shelf life. This collection of information makes up the "regulatory submission" that is provided for review to the appropriate regulatory authorities[19] in different countries. They will review the submission, and if it is acceptable, give the sponsor approval to market the drug.
Most drugs undergoing Phase III clinical trials can be marketed under FDA norms with proper recommendations and guidelines through aNew Drug Application (NDA) containing all manufacturing, preclinical, and clinical data. In case of any adverse effects being reported anywhere, the drugs need to be recalled immediately from the market. While most pharmaceutical companies refrain from this practice, it is not abnormal to see many drugs undergoing Phase III clinical trials in the market.[20]
The design of individual trials may be altered during a trial – usually during Phase II or III – to accommodate interim results for the benefit of the treatment, adjust statistical analysis, or to reach early termination of an unsuccessful design, a process called an "adaptive design".[21][22][23] Examples are the 2020World Health OrganizationSolidarity trial, EuropeanDiscovery trial, and UKRECOVERY Trial of hospitalized people with severe COVID-19 infection, each of which applies adaptive designs to rapidly alter trial parameters as results from the experimental therapeutic strategies emerge.[24][25][26]
Adaptive designs within ongoing Phase II–III clinical trials on candidate therapeutics may shorten trial durations and use fewer subjects, possibly expediting decisions for early termination or success, and coordinating design changes for a specific trial across its international locations.[23]
Some 90% of drug candidates fail once entering Phase I trials.[16] A 2019 review of average success rates of clinical trials at different phases and diseases over the years 2005–15 found a success range of only 5–14% overall.[27] Separated by diseases studied, cancer drug trials were on average only 3% successful, whereasophthalmology drugs and vaccines forinfectious diseases were 33% successful.[27] Trials using diseasebiomarkers, especially in cancer studies, were more successful than those not using biomarkers.[27] A 2010 review found about 50% of drug candidates either fail during the Phase III trial or are rejected by the national regulatory agency.[28]
For vaccines, the overallprobability of success ranges from 7% for non-industry-sponsored candidates to 40% for industry-sponsored candidates.[29]
From discovery in the laboratory of a molecule with drug potential through the years-long process establishing an approved drug, the overall cost of development through all the stages of preclinical and clinical research is about $2 billion.[16][30]
In the early 21st century, a typical Phase I trial conducted at a single clinic in the United States ranged from $1.4 million for pain or anesthesia studies to $6.6 million forimmunomodulation studies.[31] Main expense drivers were operating and clinical monitoring costs of the Phase I site.[31]
The amount of money spent on Phase II or III trials depends on numerous factors, with therapeutic area being studied and types of clinical procedures as key drivers.[31] Phase II studies may cost as low as $7 million for cardiovascular projects, and as much as $20 million forhematology trials.[31]
Phase III trials fordermatology may cost as low as $11 million, whereas a pain or anesthesia Phase III trial may cost as much as $53 million.[31] An analysis of Phase IIIpivotal trials leading to 59drug approvals by the USFood and Drug Administration over 2015–16 showed that the median cost was $19 million, but some trials involving thousands of subjects may cost 100 times more.[32]
Across all trial phases, the main expenses for clinical trials were administrative staff (about 20% of the total), clinical procedures (about 19%), and clinical monitoring of the subjects (about 11%).[31]
A Phase IV trial is also known as apostmarketing surveillance trial or drug monitoring trial to assure long-term safety and effectiveness of the drug, vaccine, device or diagnostic test.[1] Phase IV trials involve the safety surveillance (pharmacovigilance) and ongoing technical support of a drug after it receives regulatory approval to be sold.[9] Phase IV studies may be required by regulatory authorities or may be undertaken by the sponsoring company for competitive (finding a new market for the drug) or other reasons (for example, the drug may not have been tested forinteractions with other drugs, or on certain population groups such as pregnant women, who are unlikely to subject themselves to trials).[12][9] The safety surveillance is designed to detect any rare or long-term adverse effects over a much larger patient population and longer time period than was possible during the Phase I-III clinical trials.[9] Harmful effects discovered by Phase IV trials may result in a drug being withdrawn from the market or restricted to certain uses; examples includecerivastatin (brand names Baycol and Lipobay),troglitazone (Rezulin) androfecoxib (Vioxx).[citation needed]
The entire process of developing a drug from preclinical research to marketing can take approximately 12 to 18 years and may cost about $2 billion.[16][30][33][34]
{{cite book}}: CS1 maint: overridden setting (link){{cite journal}}: CS1 maint: overridden setting (link){{cite news}}: CS1 maint: overridden setting (link)The great strength of this trial is its "adaptive" nature. This means that ineffective experimental treatments can very quickly be dropped and replaced by other molecules that emerge from research efforts. We will therefore be able to make changes in real time, in line with the most recent scientific data, in order to find the best treatment for our patients
we can see that the overallprobability of success (PoS) for industry-sponsored vaccine development programs is 39.6%... In contrast, non-industry-sponsored vaccine development programs have an overall PoS of only 6.8%
{{cite journal}}: CS1 maint: overridden setting (link){{cite journal}}: CS1 maint: overridden setting (link)