Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Phase-type distribution

From Wikipedia, the free encyclopedia
Phase-type
ParametersS,m×m{\displaystyle S,\;m\times m} subgeneratormatrix
α{\displaystyle {\boldsymbol {\alpha }}},probabilityrow vector
Supportx[0;){\displaystyle x\in [0;\infty )\!}
PDFαexSS0{\displaystyle {\boldsymbol {\alpha }}e^{xS}{\boldsymbol {S}}^{0}}
See article for details
CDF1αexS1{\displaystyle 1-{\boldsymbol {\alpha }}e^{xS}{\boldsymbol {1}}}
MeanαS11{\displaystyle -{\boldsymbol {\alpha }}{S}^{-1}\mathbf {1} }
Medianno simple closed form
Modeno simple closed form
Variance2αS21(αS11)2{\displaystyle 2{\boldsymbol {\alpha }}{S}^{-2}\mathbf {1} -({\boldsymbol {\alpha }}{S}^{-1}\mathbf {1} )^{2}}
MGFα(tI+S)1S0+α0{\displaystyle -{\boldsymbol {\alpha }}(tI+S)^{-1}{\boldsymbol {S}}^{0}+\alpha _{0}}
CFα(itI+S)1S0+α0{\displaystyle -{\boldsymbol {\alpha }}(itI+S)^{-1}{\boldsymbol {S}}^{0}+\alpha _{0}}

Aphase-type distribution is aprobability distribution constructed by a convolution or mixture ofexponential distributions.[1] It results from a system of one or more inter-relatedPoisson processes occurring insequence, or phases. The sequence in which each of the phases occurs may itself be astochastic process. The distribution can be represented by arandom variable describing the time until absorption of aMarkov process with one absorbing state. Each of thestates of the Markov process represents one of the phases.

It has adiscrete-time equivalent – thediscrete phase-type distribution.

The set of phase-type distributions is dense in the field of all positive-valued distributions, that is, it can be used to approximate any positive-valued distribution.

Definition

[edit]

Consider acontinuous-time Markov process withm + 1 states, wherem ≥ 1, such that the states 1,...,m are transient states and state 0 is an absorbing state. Further, let the process have an initial probability of starting in any of them + 1 phases given by the probability vector (α0,α) whereα0 is a scalar andα is a 1 × m vector.

Thecontinuous phase-type distribution is the distribution of time from the above process's starting until absorption in the absorbing state.

This process can be written in the form of atransition rate matrix,

Q=[00S0S],{\displaystyle {Q}=\left[{\begin{matrix}0&\mathbf {0} \\\mathbf {S} ^{0}&{S}\\\end{matrix}}\right],}

whereS is anm × m matrix andS0 = –S1. Here1 represents anm × 1 column vector with every element being 1.

Characterization

[edit]

The distribution of timeX until the process reaches the absorbing state is said to be phase-type distributed and is denoted PH(α,S).

The distribution function ofX is given by,

F(x)=1αexp(Sx)1,{\displaystyle F(x)=1-{\boldsymbol {\alpha }}\exp({S}x)\mathbf {1} ,}

and the density function,

f(x)=αexp(Sx)S0,{\displaystyle f(x)={\boldsymbol {\alpha }}\exp({S}x)\mathbf {S^{0}} ,}

for allx > 0, where exp( · ) is thematrix exponential. It is usually assumed the probability of process starting in the absorbing state is zero (i.e. α0= 0). The moments of the distribution function are given by

E[Xn]=(1)nn!αSn1.{\displaystyle E[X^{n}]=(-1)^{n}n!{\boldsymbol {\alpha }}{S}^{-n}\mathbf {1} .}

TheLaplace transform of the phase type distribution is given by

M(s)=α0+α(sIS)1S0,{\displaystyle M(s)=\alpha _{0}+{\boldsymbol {\alpha }}(sI-S)^{-1}\mathbf {S^{0}} ,}

whereI is the identity matrix.

Special cases

[edit]

The following probability distributions are all considered special cases of a continuous phase-type distribution:

  • Degenerate distribution, point mass at zero or theempty phase-type distribution – 0 phases.
  • Exponential distribution – 1 phase.
  • Erlang distribution – 2 or more identical phases in sequence.
  • Deterministic distribution (or constant) – The limiting case of an Erlang distribution, as the number of phases become infinite, while the time in each state becomes zero.
  • Coxian distribution – 2 or more (not necessarily identical) phases in sequence, with a probability of transitioning to the terminating/absorbing state after each phase.
  • Hyperexponential distribution (also called a mixture of exponential) – 2 or more non-identical phases, that each have a probability of occurring in a mutually exclusive, or parallel, manner. (Note: The exponential distribution is the degenerate situation when all the parallel phases are identical.)
  • Hypoexponential distribution – 2 or more phases in sequence, can be non-identical or a mixture of identical and non-identical phases, generalises the Erlang.

As the phase-type distribution is dense in the field of all positive-valued distributions, we can represent any positive valued distribution. However, the phase-type is a light-tailed or platykurtic distribution. So the representation of heavy-tailed or leptokurtic distribution by phase type is an approximation, even if the precision of the approximation can be as good as we want.

Examples

[edit]

In all the following examples it is assumed that there is no probability mass at zero, that is α0 = 0.

Exponential distribution

[edit]

The simplest non-trivial example of a phase-type distribution is the exponential distribution of parameter λ. The parameter of the phase-type distribution are :S = -λ andα = 1.

Hyperexponential or mixture of exponential distribution

[edit]

The mixture of exponential orhyperexponential distribution with λ12,...,λn>0 can be represented as a phase type distribution with

α=(α1,α2,α3,α4,...,αn){\displaystyle {\boldsymbol {\alpha }}=(\alpha _{1},\alpha _{2},\alpha _{3},\alpha _{4},...,\alpha _{n})}

withi=1nαi=1{\displaystyle \sum _{i=1}^{n}\alpha _{i}=1} and

S=[λ100000λ200000λ300000λ400000λ5].{\displaystyle {S}=\left[{\begin{matrix}-\lambda _{1}&0&0&0&0\\0&-\lambda _{2}&0&0&0\\0&0&-\lambda _{3}&0&0\\0&0&0&-\lambda _{4}&0\\0&0&0&0&-\lambda _{5}\\\end{matrix}}\right].}

This mixture of densities of exponential distributed random variables can be characterized through

f(x)=i=1nαiλieλix=i=1nαifXi(x),{\displaystyle f(x)=\sum _{i=1}^{n}\alpha _{i}\lambda _{i}e^{-\lambda _{i}x}=\sum _{i=1}^{n}\alpha _{i}f_{X_{i}}(x),}

or its cumulative distribution function

F(x)=1i=1nαieλix=i=1nαiFXi(x).{\displaystyle F(x)=1-\sum _{i=1}^{n}\alpha _{i}e^{-\lambda _{i}x}=\sum _{i=1}^{n}\alpha _{i}F_{X_{i}}(x).}

withXiExp(λi){\displaystyle X_{i}\sim Exp(\lambda _{i})}

Erlang distribution

[edit]

The Erlang distribution has two parameters, the shape an integerk > 0 and the rate λ > 0. This is sometimes denotedE(k,λ). The Erlang distribution can be written in the form of a phase-type distribution by makingS ak×k matrix with diagonal elements -λ and super-diagonal elements λ, with the probability of starting in state 1 equal to 1. For example,E(5,λ),

α=(1,0,0,0,0),{\displaystyle {\boldsymbol {\alpha }}=(1,0,0,0,0),}

and

S=[λλ0000λλ0000λλ0000λλ0000λ].{\displaystyle {S}=\left[{\begin{matrix}-\lambda &\lambda &0&0&0\\0&-\lambda &\lambda &0&0\\0&0&-\lambda &\lambda &0\\0&0&0&-\lambda &\lambda \\0&0&0&0&-\lambda \\\end{matrix}}\right].}

For a given number of phases, the Erlang distribution is the phase type distribution with smallest coefficient of variation.[2]

Thehypoexponential distribution is a generalisation of the Erlang distribution by having different rates for each transition (the non-homogeneous case).

Mixture of Erlang distribution

[edit]

The mixture of two Erlang distributions with parameterE(3,β1),E(3,β2) and (α12) (such that α1 + α2 = 1 and for eachi, αi ≥ 0) can be represented as a phase type distribution with

α=(α1,0,0,α2,0,0),{\displaystyle {\boldsymbol {\alpha }}=(\alpha _{1},0,0,\alpha _{2},0,0),}

and

S=[β1β100000β1β100000β1000000β2β200000β2β200000β2].{\displaystyle {S}=\left[{\begin{matrix}-\beta _{1}&\beta _{1}&0&0&0&0\\0&-\beta _{1}&\beta _{1}&0&0&0\\0&0&-\beta _{1}&0&0&0\\0&0&0&-\beta _{2}&\beta _{2}&0\\0&0&0&0&-\beta _{2}&\beta _{2}\\0&0&0&0&0&-\beta _{2}\\\end{matrix}}\right].}

Coxian distribution

[edit]

TheCoxian distribution is a generalisation of theErlang distribution. Instead of only being able to enter the absorbing state from statek it can be reached from any phase. The phase-type representation is given by,

S=[λ1p1λ10000λ2p2λ20000λk2pk2λk20000λk1pk1λk10000λk]{\displaystyle S=\left[{\begin{matrix}-\lambda _{1}&p_{1}\lambda _{1}&0&\dots &0&0\\0&-\lambda _{2}&p_{2}\lambda _{2}&\ddots &0&0\\\vdots &\ddots &\ddots &\ddots &\ddots &\vdots \\0&0&\ddots &-\lambda _{k-2}&p_{k-2}\lambda _{k-2}&0\\0&0&\dots &0&-\lambda _{k-1}&p_{k-1}\lambda _{k-1}\\0&0&\dots &0&0&-\lambda _{k}\end{matrix}}\right]}

and

α=(1,0,,0),{\displaystyle {\boldsymbol {\alpha }}=(1,0,\dots ,0),}

where 0 <p1,...,pk-1 ≤ 1. In the case where allpi = 1 we have the Erlang distribution. The Coxian distribution is extremely important as any acyclic phase-type distribution has an equivalent Coxian representation.

Thegeneralised Coxian distribution relaxes the condition that requires starting in the first phase.

Properties

[edit]

Minima of Independent PH Random Variables

[edit]

Similarly to the exponential distribution, the class of PH distributions is closed under minima of independent random variables. A description of this ishere.

Generating samples from phase-type distributed random variables

[edit]

BuTools includes methods for generating samples from phase-type distributed random variables.[3]

Approximating other distributions

[edit]

Any distribution can be arbitrarily well approximated by a phase type distribution.[4][5] In practice, however, approximations can be poor when the size of the approximating process is fixed. Approximating a deterministic distribution of time 1 with 10 phases, each of average length 0.1 will have variance 0.1 (because the Erlang distribution has smallest variance[2]).

Fitting a phase type distribution to data

[edit]

Methods to fit a phase type distribution to data can be classified as maximum likelihood methods or moment matching methods.[8] Fitting a phase type distribution toheavy-tailed distributions has been shown to be practical in some situations.[9]

  • PhFit a C script for fitting discrete and continuous phase type distributions to data[10]
  • EMpht is a C script for fitting phase-type distributions to data or parametric distributions using anexpectation–maximization algorithm.[11]
  • HyperStar was developed around the core idea of making phase-type fitting simple and user-friendly, in order to advance the use of phase-type distributions in a wide range of areas. It provides a graphical user interface and yields good fitting results with only little user interaction.[12]
  • jPhase is a Java library which can also compute metrics for queues using the fitted phase type distribution[13]

See also

[edit]

References

[edit]
  1. ^Harchol-Balter, M. (2012). "Real-World Workloads: High Variability and Heavy Tails".Performance Modeling and Design of Computer Systems. pp. 347–348.doi:10.1017/CBO9781139226424.026.ISBN 9781139226424.
  2. ^abAldous, David;Shepp, Larry (1987)."The least variable phase type distribution is erlang"(PDF).Stochastic Models.3 (3): 467.doi:10.1080/15326348708807067.
  3. ^Horváth, G. B.; Reinecke, P.; Telek, M. S.; Wolter, K. (2012)."Efficient Generation of PH-Distributed Random Variates"(PDF).Analytical and Stochastic Modeling Techniques and Applications. Lecture Notes in Computer Science. Vol. 7314. p. 271.doi:10.1007/978-3-642-30782-9_19.ISBN 978-3-642-30781-2.
  4. ^Bolch, Gunter; Greiner, Stefan; de Meer, Hermann;Trivedi, Kishor S. (1998). "Steady-State Solutions of Markov Chains".Queueing Networks and Markov Chains. pp. 103–151.doi:10.1002/0471200581.ch3.ISBN 0471193666.
  5. ^Cox, D. R. (2008). "A use of complex probabilities in the theory of stochastic processes".Mathematical Proceedings of the Cambridge Philosophical Society.51 (2):313–319.doi:10.1017/S0305004100030231.S2CID 122768319.
  6. ^Osogami, T.;Harchol-Balter, M. (2006). "Closed form solutions for mapping general distributions to quasi-minimal PH distributions".Performance Evaluation.63 (6): 524.doi:10.1016/j.peva.2005.06.002.
  7. ^Casale, G.; Zhang, E. Z.;Smirni, E. (2008). "KPC-Toolbox: Simple Yet Effective Trace Fitting Using Markovian Arrival Processes".2008 Fifth International Conference on Quantitative Evaluation of Systems(PDF). p. 83.doi:10.1109/QEST.2008.33.ISBN 978-0-7695-3360-5.S2CID 252444.
  8. ^Lang, Andreas; Arthur, Jeffrey L. (1996). "Parameter approximation for Phase-Type distributions". In Chakravarthy, S.; Alfa, Attahiru S. (eds.).Matrix Analytic methods in Stochastic Models. CRC Press.ISBN 0824797663.
  9. ^Ramaswami, V.; Poole, D.; Ahn, S.; Byers, S.; Kaplan, A. (2005). "Ensuring Access to Emergency Services in the Presence of Long Internet Dial-Up Calls".Interfaces.35 (5): 411.doi:10.1287/inte.1050.0155.
  10. ^Horváth, András S.; Telek, Miklós S. (2002). "PhFit: A General Phase-Type Fitting Tool".Computer Performance Evaluation: Modelling Techniques and Tools. Lecture Notes in Computer Science. Vol. 2324. p. 82.doi:10.1007/3-540-46029-2_5.ISBN 978-3-540-43539-6.
  11. ^Asmussen, Søren; Nerman, Olle; Olsson, Marita (1996). "Fitting Phase-Type Distributions via the EM Algorithm".Scandinavian Journal of Statistics.23 (4):419–441.JSTOR 4616418.
  12. ^Reinecke, P.; Krauß, T.; Wolter, K. (2012)."Cluster-based fitting of phase-type distributions to empirical data".Computers & Mathematics with Applications.64 (12): 3840.doi:10.1016/j.camwa.2012.03.016.
  13. ^Pérez, J. F.; Riaño, G. N. (2006). "jPhase: an object-oriented tool for modeling phase-type distributions".Proceeding from the 2006 workshop on Tools for solving structured Markov chains (SMCtools '06)(PDF).doi:10.1145/1190366.1190370.ISBN 1595935061.S2CID 7863948.
  • M. F. Neuts (1975), Probability distributions of phase type, In Liber Amicorum Prof. Emeritus H. Florin, Pages 173-206, University of Louvain.
  • M. F. Neuts.Matrix-Geometric Solutions in Stochastic Models: an Algorithmic Approach, Chapter 2: Probability Distributions of Phase Type; Dover Publications Inc., 1981.
  • G. Latouche, V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modelling, 1st edition. Chapter 2: PH Distributions; ASA SIAM, 1999.
  • C. A. O'Cinneide (1990).Characterization of phase-type distributions. Communications in Statistics: Stochastic Models,6(1), 1-57.
  • C. A. O'Cinneide (1999).Phase-type distribution: open problems and a few properties, Communication in Statistic: Stochastic Models,15(4), 731-757.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Phase-type_distribution&oldid=1182270094"
Categories:

[8]ページ先頭

©2009-2025 Movatter.jp