Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Paleoproterozoic

From Wikipedia, the free encyclopedia
First era of the Proterozoic Eon
Paleoproterozoic
2500 – 1600Ma
Paleoproterozoicstromatolites
Chronology
−2500 —
−2400 —
−2300 —
−2200 —
−2100 —
−2000 —
−1900 —
−1800 —
−1700 —
−1600 —
 
 
An approximate timescale of key Paleoproterozoic events
Vertical axis scale:Millions of years ago
Proposed redefinition(s)2420–1780 Ma
Gradstein et al., 2012
Proposed subdivisionsOxygenian Period, 2420–2250 Ma

Gradstein et al., 2012
Jatulian/Eukaryian Period, 2250–2060 Ma
Gradstein et al., 2012
Columbian Period, 2060–1780 Ma

Gradstein et al., 2012
Etymology
Name formalityFormal
Alternate spelling(s)Palaeoproterozoic
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitEra
Stratigraphic unitErathem
Time span formalityFormal
Lower boundary definitionDefined Chronometrically
Lower GSSA ratified1990[1]
Upper boundary definitionDefined Chronometrically
Upper GSSA ratified1990[1]

ThePaleoproterozoic Era[4] (also spelledPalaeoproterozoic) is the first of the three sub-divisions (eras) of theProterozoiceon, and also the longest era of the Earth'sgeological history, spanning from2,500 to 1,600 million years ago (2.5–1.6 Ga). It is further subdivided into fourgeologic periods, namely theSiderian,Rhyacian,Orosirian andStatherian.

Paleontological evidence suggests that the Earth's rotational rate ~1.8 billion years ago equated to 20-hour days, implying a total of ~450 days per year.[5] It was during this era that thecontinents first stabilized.[clarification needed]

Atmosphere

[edit]
Main articles:Prebiotic atmosphere,Geological history of oxygen, andGreat Oxygenation Event

TheEarth's atmosphere was originally a weaklyreducing atmosphere consisting largely ofnitrogen,methane,ammonia,carbon dioxide andinert gases, in total comparable toTitan's atmosphere.[6] Whenoxygenic photosynthesis evolved incyanobacteria during theMesoarchean, the increasing amount ofbyproductdioxygen began to deplete thereductants in theocean,land surface and the atmosphere. Eventually all surface reductants (particularlyferrous iron,sulfur andatmospheric methane) were exhausted, and the atmosphericfree oxygen levels soared permanently during the Siderian and Rhyacian periods in anaerochemical event called theGreat Oxidation Event, which brought atmospheric oxygen from near none to up to 10% of the modern level.[7]

Life

[edit]
Further information:Symbiogenesis

At the beginning of the precedingArchean eon, almost all existing lifeforms weresingle-cellprokaryoticanaerobic organisms whosemetabolism was based on a form ofcellular respiration that did not require oxygen, andautotrophs were eitherchemosynthetic or relied uponanoxygenic photosynthesis. After the Great Oxygenation Event, the then mainlyarchaea-dominated anaerobicmicrobial mats were devastated as free oxygen is highly reactive and biologically toxic to cellular structures. This was compounded by a 300-million-year-longglobal icehouse event known as theHuronian glaciation — at least partly due to the depletion of atmospheric methane, a powerfulgreenhouse gas — resulted in what is widely considered one of the first and most significantmass extinctions on Earth.[8][9] The organisms that thrived after the extinction were mainlyaerobes that evolvedbioactive antioxidants and eventuallyaerobic respiration, and surviving anaerobes were forced to livesymbiotically alongside aerobes in hybrid colonies, which enabled the evolution ofmitochondria ineukaryotic organisms.

The Palaeoproterozoic represents the era from which the oldest cyanobacterial fossils, those ofEoentophysalis belcherensis from the Kasegalik Formation in theBelcher Islands ofNunavut, are known.[10] By 1.75 Ga, thylakoid-bearing cyanobacteria had evolved, as evidenced by fossils from the McDermott Formation of Australia.[11]

Many crown node eukaryotes (from which the modern-day eukaryotic lineages would have arisen) have been approximately dated to around the time of the Paleoproterozoic Era.[12][13][14]While there is some debate as to the exact time at which eukaryotes evolved,[15][16]current understanding places it somewhere in this era.[17][18][19] Statherianfossils from theChangcheng Group inNorth China provide evidence that eukaryotic life was already diverse by the late Palaeoproterozoic.[20]

Geological events

[edit]

During this era, the earliest global-scale continent-continent collision belts developed. The associated continent and mountain building events are represented by the 2.1–2.0 Ga Trans-Amazonian andEburneanorogens in South America and West Africa; the ~2.0 GaLimpopo Belt in southern Africa; the 1.9–1.8 GaTrans-Hudson,Penokean, Taltson–Thelon,Wopmay,Ungava andTorngat orogens in North America, the 1.9–1.8 GaNagssugtoqidian Orogen in Greenland; the 1.9–1.8 Ga Kola–Karelia,Svecofennian, Volhyn-Central Russian, and Pachelma orogens in Baltica (Eastern Europe); the 1.9–1.8 GaAkitkan Orogen in Siberia; the ~1.95 Ga Khondalite Belt; the ~1.85 Ga Trans-North China Orogen in North China; and the 1.8-1.6 GaYavapai andMazatzal orogenies in southern North America.

That pattern of collision belts supports the formation of a Proterozoic supercontinent namedColumbia orNuna.[21][22] That continental collisions suddenly led to mountain building at large scale is interpreted as having resulted from increased biomass and carbon burial during and after the Great Oxidation Event: Subducted carbonaceous sediments are hypothesized to have lubricated compressive deformation and led to crustal thickening.[23]

Felsic volcanism in what is now northern Sweden led to the formation of theKiruna andArvidsjaurporphyries.[24]

Thelithospheric mantle ofPatagonia's oldest blocks formed.[25]

Wikimedia Commons has media related toPaleoproterozoic.

See also

[edit]

References

[edit]
  1. ^abPlumb, Kenneth A. (June 1991)."New Precambrian time scale".Episodes.14 (2):139–140.doi:10.18814/epiiugs/1991/v14i2/005.eISSN 2586-1298.ISSN 0705-3797.LCCN 78646808.OCLC 4130038.Open access icon
  2. ^"palaeo-".Lexico UK English Dictionary.Oxford University Press. Archived fromthe original on 2020-06-18."Proterozoic".Lexico UK English Dictionary.Oxford University Press. Archived fromthe original on 2020-06-17.
  3. ^"Proterozoic".Merriam-Webster.com Dictionary. Merriam-Webster.
  4. ^There are several ways of pronouncingPaleoproterozoic, includingIPA:/ˌpæliˌprtərəˈzɪk,ˌp-,-liə-,-ˌprɒt-,-ər-,-trə-,-tr-/PAL-ee-oh-PROH-tər-ə-ZOH-ik, PAY-, -⁠PROT-, -⁠ər-oh-, -⁠trə-, -⁠troh-.[2][3]
  5. ^Pannella, Giorgio (1972). "Paleontological evidence on the Earth's rotational history since early precambrian".Astrophysics and Space Science.16 (2): 212.Bibcode:1972Ap&SS..16..212P.doi:10.1007/BF00642735.S2CID 122908383.
  6. ^Trainer, Melissa G.; Pavlov, Alexander A.; DeWitt, H. Langley; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A. (2006-11-28)."Organic haze on Titan and the early Earth".Proceedings of the National Academy of Sciences.103 (48):18035–18042.doi:10.1073/pnas.0608561103.ISSN 0027-8424.PMC 1838702.PMID 17101962.
  7. ^Ossa Ossa, Frantz; Spangenberg, Jorge E.; Bekker, Andrey; König, Stephan; Stüeken, Eva E.; Hofmann, Axel; Poulton, Simon W.; Yierpan, Aierken; Varas-Reus, Maria I.; Eickmann, Benjamin; Andersen, Morten B.; Schoenberg, Ronny (15 September 2022)."Moderate levels of oxygenation during the late stage of Earth's Great Oxidation Event".Earth and Planetary Science Letters.594 117716.doi:10.1016/j.epsl.2022.117716.hdl:10481/78482.
  8. ^Hodgskiss, Malcolm S. W.; Crockford, Peter W.; Peng, Yongbo; Wing, Boswell A.; Horner, Tristan J. (27 August 2019)."A productivity collapse to end Earth's Great Oxidation".Proceedings of the National Academy of Sciences of the United States of America.116 (35):17207–17212.Bibcode:2019PNAS..11617207H.doi:10.1073/pnas.1900325116.PMC 6717284.PMID 31405980.
  9. ^Margulis, Lynn;Sagan, Dorion (1997-05-29).Microcosmos: Four Billion Years of Microbial Evolution. University of California Press.ISBN 978-0-520-21064-6.
  10. ^Hodgskiss, Malcolm S.W.; Dagnaud, Olivia M.J.; Frost, Jamie L.; Halverson, Galen P.; Schmitz, Mark D.; Swanson-Hysell, Nicholas L.; Sperling, Erik A. (15 August 2019)."New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group".Earth and Planetary Science Letters.520:141–152.doi:10.1016/j.epsl.2019.05.023. Retrieved18 May 2024 – via Elsevier Science Direct.
  11. ^Demoulin, Catherine F.; Lara, Yannick J.; Lambion, Alexandre; Javaux, Emmanuelle J. (18 January 2024)."Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis".Nature.625 (7995):529–534.doi:10.1038/s41586-023-06896-7.ISSN 0028-0836. Retrieved24 June 2024.
  12. ^Mänd, Kaarel; Planavsky, Noah J.; Porter, Susannah M.; Robbins, Leslie J.; Wang, Changle; Kraitsmann, Timmu; Paiste, Kärt; Paiste, Päärn; Romashkin, Alexander E.; Deines, Yulia E.; Kirsimäe, Kalle; Lepland, Aivo; Konhauser, Kurt O. (15 April 2022)."Chromium evidence for protracted oxygenation during the Paleoproterozoic".Earth and Planetary Science Letters.584 117501.doi:10.1016/j.epsl.2022.117501.hdl:10037/24808. Retrieved15 December 2022.
  13. ^Hedges, S Blair; Chen, Hsiong; Kumar, Sudhir; Wang, Daniel YC; Thompson, Amanda S; Watanabe, Hidemi (2001-09-12)."A genomic timescale for the origin of eukaryotes".BMC Evolutionary Biology.1: 4.doi:10.1186/1471-2148-1-4.ISSN 1471-2148.PMC 56995.PMID 11580860.
  14. ^Hedges, S Blair; Blair, Jaime E; Venturi, Maria L; Shoe, Jason L (2004-01-28)."A molecular timescale of eukaryote evolution and the rise of complex multicellular life".BMC Evolutionary Biology.4: 2.doi:10.1186/1471-2148-4-2.ISSN 1471-2148.PMC 341452.PMID 15005799.
  15. ^Rodríguez-Trelles, Francisco; Tarrío, Rosa; Ayala, Francisco J. (2002-06-11)."A methodological bias toward overestimation of molecular evolutionary time scales".Proceedings of the National Academy of Sciences of the United States of America.99 (12):8112–8115.Bibcode:2002PNAS...99.8112R.doi:10.1073/pnas.122231299.ISSN 0027-8424.PMC 123029.PMID 12060757.
  16. ^Stechmann, Alexandra; Cavalier-Smith, Thomas (2002-07-05). "Rooting the eukaryote tree by using a derived gene fusion".Science.297 (5578):89–91.Bibcode:2002Sci...297...89S.doi:10.1126/science.1071196.ISSN 1095-9203.PMID 12098695.S2CID 21064445.
  17. ^Ayala, Francisco José; Rzhetsky, Andrey; Ayala, Francisco J. (1998-01-20)."Origin of the metazoan phyla: Molecular clocks confirm paleontological estimates".Proceedings of the National Academy of Sciences of the United States of America.95 (2):606–611.Bibcode:1998PNAS...95..606J.doi:10.1073/pnas.95.2.606.ISSN 0027-8424.PMC 18467.PMID 9435239.
  18. ^Wang, D Y; Kumar, S; Hedges, S B (1999-01-22)."Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi".Proceedings of the Royal Society B: Biological Sciences.266 (1415):163–171.doi:10.1098/rspb.1999.0617.PMC 1689654.PMID 10097391.
  19. ^Javaux, Emmanuelle J.; Lepot, Kevin (January 2018)."The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth's middle-age".Earth-Science Reviews.176:68–86.doi:10.1016/j.earscirev.2017.10.001.hdl:20.500.12210/62416.
  20. ^Miao, Lanyun; Moczydłowska, Małgorzata; Zhu, Shixing; Zhu, Maoyan (February 2019)."New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China".Precambrian Research.321:172–198.doi:10.1016/j.precamres.2018.11.019.S2CID 134362289. Retrieved29 December 2022.
  21. ^Zhao, Guochun; Cawood, Peter A; Wilde, Simon A; Sun, Min (2002). "Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent".Earth-Science Reviews.59 (1–4):125–162.Bibcode:2002ESRv...59..125Z.doi:10.1016/S0012-8252(02)00073-9.
  22. ^Zhao, Guochun; Sun, M.; Wilde, Simon A.; Li, S.Z. (2004)."A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup".Earth-Science Reviews.67 (1–2):91–123.Bibcode:2004ESRv...67...91Z.doi:10.1016/j.earscirev.2004.02.003.
  23. ^John Parnell, Connor Brolly:Increased biomass and carbon burial 2 billion years ago triggered mountain building.Nature Communications Earth & Environment, 2021,doi:10.1038/s43247-021-00313-5 (Open Access).
  24. ^Lundqvist, Thomas (2009).Porfyr i Sverige: En geologisk översikt (in Swedish). Sveriges geologiska undersökning. pp. 24–27.ISBN 978-91-7158-960-6.
  25. ^Schilling, Manuel Enrique; Carlson, Richard Walter; Tassara, Andrés; Conceição, Rommulo Viveira; Berotto, Gustavo Walter; Vásquez, Manuel; Muñoz, Daniel; Jalowitzki, Tiago; Gervasoni, Fernanda; Morata, Diego (2017). "The origin of Patagonia revealed by Re-Os systematics of mantle xenoliths".Precambrian Research.294:15–32.Bibcode:2017PreR..294...15S.doi:10.1016/j.precamres.2017.03.008.hdl:11336/19304.

External links

[edit]
Cenozoic Era
(present–66.0 Ma)
Quaternary(present–2.58 Ma)
Neogene(2.58–23.0 Ma)
Paleogene(23.0–66.0 Ma)
Example of stratigraphic column
Mesozoic Era
(66.0–252 Ma)
Cretaceous(66.0–145 Ma)
Jurassic(145–201 Ma)
Triassic(201–252 Ma)
Paleozoic Era
(252–539 Ma)
Permian(252–299 Ma)
Carboniferous(299–359 Ma)
Devonian(359–419 Ma)
Silurian(419–444 Ma)
Ordovician(444–485 Ma)
Cambrian(485–539 Ma)
Proterozoic Eon
(539 Ma–2.5 Ga)
Neoproterozoic(539 Ma–1 Ga)
Mesoproterozoic(1–1.6 Ga)
Paleoproterozoic(1.6–2.5 Ga)
Archean Eon(2.5–4 Ga)
Hadean Eon(4–4.6 Ga)
 
ka = kiloannum (thousand years ago);Ma = megaannum (million years ago);Ga = gigaannum (billion years ago).
See also:Geologic time scale  • iconGeology portal  • World portal
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Paleoproterozoic&oldid=1317995220"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp