Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Polyunsaturated fat

From Wikipedia, the free encyclopedia
(Redirected fromPUFA)
Type of fatty acid defined by molecular bonds
Types offats infood
Components
Manufactured fats

Inbiochemistry and nutrition, apolyunsaturated fat is afat that contains apolyunsaturated fatty acid (abbreviatedPUFA), which is a subclass offatty acid characterized by a backbone with two or more carbon–carbondouble bonds.[1][2]Some polyunsaturated fatty acids areessentials. Polyunsaturated fatty acids are precursors to and are derived from polyunsaturatedfats, which includedrying oils.[3]

Chemical structure of the polyunsaturated fatty acidlinoleic acid
3D representation oflinoleic acid in a bentconformation
Chemical structure of α-linolenic acid (ALA), an essential omega−3 fatty acid

Nomenclature

[edit]

The position of the carbon-carbon double bonds incarboxylic acid chains in fats is designated byGreek letters.[1] The carbon atom closest to thecarboxyl group is thealpha carbon, the next carbon is thebeta carbon andso on. In fatty acids the carbon atom of themethyl group at the end of the hydrocarbon chain is called theomega carbon becauseomega is the last letter of the Greek alphabet.Omega-3 fatty acids have a double bond three carbons away from the methyl carbon, whereasomega-6 fatty acids have a double bond six carbons away from the methyl carbon. The illustration below shows the omega-6 fatty acid,linoleic acid.

Polyunsaturated fatty acids can be classified in various groups by their chemical structure:

Based on the length of their carbon backbone, they are sometimes classified in two groups:[4] All featurepentadiene groups.

  • short chain polyunsaturated fatty acids (SC-PUFA), with 18 carbon atoms. These are more common. Key members includelinoleic acid, α-linolenic acid, andarachidonic acid.[5]
  • long-chain polyunsaturated fatty acids (LC-PUFA) with 20 or more carbon atoms

Production

[edit]

PUFAs with 18 carbon atoms, which are the most common variety, are not produced by mammals. Since they have important dietary functions, theirbiosynthesis has received much attention. Plants produce PUFAs fromoleic acid. Key enzymes are calledfatty acid desaturases, which introduce additional double bonds. Desaturases convert oleic acid intolinoleic acid the precursor toalpha-linolenic acid,gamma-linolenic acid anddihomo-gamma-linolenic acid.[6]

Industrial PUFAs are generally obtained by hydrolysis of fats that contain PUFAs. The process is complicated by the sensitive nature of PUFAs, leading to side reactions and colorization. Thus, steam hydrolysis often fails for this reason. Alkaline hydrolysis of fats followed by acidification is expensive.Lipases, a family of enzymes, show potential as mild andgreen catalysts for the production of PUFAs from triglycerides.[3]

In general, outside of dietary contexts, PUFAs are undesirable components of vegetable oils, so there is great interest in their removal from, say, olive oil. One technology for lowering the PUFA contact is by selective formation of derivatives withureas.[3]

Reactions

[edit]

From the perspective of chemicalanalysis, PUFA's have highiodine numbers. These high values are simply a reflection of the fact that PUFAs arepolyunsaturated. Hydrogenation of PUFAs gives less unsaturated derivatives. For unsaturated products from partial hydrogenation often contain some trans isomers. The transmonounsaturated C20 specieselaidic acid can be prepared in this way.[3]

Peroxidation

[edit]
Main article:Lipid peroxidation

Polyunsaturated fatty acids are susceptible tolipid peroxidation, far more so than monounsaturated or saturated analogues. The basis for this reactivity is the weakness of doublyallylic C-H bonds. They aredrying oils, i.e. film-forming liquids suitable as painting. One practical consequence is that polyunsaturated fatty acids have poor shelf life, owing to their tendency towardautoxidation, leading, in the case of edibles, torancidification. Metals accelerate the degradation. A range of reactions with oxygen occur. Products include fatty acidhydroperoxides, epoxy-hydroxy polyunsaturated fatty acids,jasmonates,divinylether fatty acids, andleaf aldehydes. Some of these derivatives are signalling molecules, some are used in plant defense (antifeedants), some are precursors to other metabolites that are used by the plant.[5]

Types

[edit]

Methylene-interrupted polyenes

[edit]

These fatty acids have 2 or morecis double bonds that are separated from each other by a singlemethylene bridge (-CH
2
-). This form is also sometimes called adivinylmethane pattern.[7]

Methylene- interrupted double bonds
−C−C=C−C−C=C−

The essential fatty acids are all omega-3 and -6 methylene-interrupted fatty acids.See more atEssential fatty acids—Nomenclature[8]

Omega-3

[edit]
Common nameLipid nameChemical name
Omega-3 fatty acids, polyunsaturated
Hexadecatrienoic acid (HTA)16:3 (n-3)all-cis-7,10,13-hexadecatrienoic acid
α-Linolenic acid (ALA)18:3 (n-3)all-cis-9,12,15-octadecatrienoic acid
Stearidonic acid (SDA)18:4 (n-3)all-cis-6,9,12,15,-octadecatetraenoic acid
Eicosatrienoic acid (ETE)20:3 (n-3)all-cis-11,14,17-eicosatrienoic acid
Eicosatetraenoic acid (ETA)20:4 (n-3)all-cis-8,11,14,17-eicosatetraenoic acid
Eicosapentaenoic acid (EPA, Timnodonic acid)20:5 (n-3)all-cis-5,8,11,14,17-eicosapentaenoic acid
Heneicosapentaenoic acid (HPA)21:5 (n-3)all-cis-6,9,12,15,18-heneicosapentaenoic acid
Docosapentaenoic acid (DPA, Clupanodonic acid)22:5 (n-3)all-cis-7,10,13,16,19-docosapentaenoic acid
Docosahexaenoic acid (DHA, Cervonic acid)22:6 (n-3)all-cis-4,7,10,13,16,19-docosahexaenoic acid
Tetracosapentaenoic acid24:5 (n-3)all-cis-9,12,15,18,21-tetracosapentaenoic acid
Tetracosahexaenoic acid (Nisinic acid)24:6 (n-3)all-cis-6,9,12,15,18,21-tetracosahexaenoic acid

Omega-6

[edit]
Common nameLipid nameChemical name
Omega-6 fatty acids, polyunsaturated
Linoleic acid (LA)18:2 (n-6)all-cis-9,12-octadecadienoic acid
gamma-Linolenic acid (GLA)18:3 (n-6)all-cis-6,9,12-octadecatrienoic acid
Eicosadienoic acid20:2 (n-6)all-cis-11,14-eicosadienoic acid
Dihomo-gamma-linolenic acid (DGLA)20:3 (n-6)all-cis-8,11,14-eicosatrienoic acid
Arachidonic acid (AA)20:4 (n-6)all-cis-5,8,11,14-eicosatetraenoic acid
Docosadienoic acid22:2 (n-6)all-cis-13,16-docosadienoic acid
Adrenic acid (AdA)22:4 (n-6)all-cis-7,10,13,16-docosatetraenoic acid
Docosapentaenoic acid (DPA)22:5 (n-6)all-cis-4,7,10,13,16-docosapentaenoic acid
Tetracosatetraenoic acid24:4 (n-6)all-cis-9,12,15,18-tetracosatetraenoic acid
Tetracosapentaenoic acid24:5 (n-6)all-cis-6,9,12,15,18-tetracosapentaenoic acid

Conjugated fatty acids

[edit]
Conjugated double bonds
-C=C-C=C-
Common nameLipid nameChemical name
Conjugated fatty acids  have two or moreconjugated double bonds
Conjugated Linoleic Acids (two conjugated double bonds)
Rumenic acid18:2 (n-7)9Z,11E-octadeca-9,11-dienoic acid
 18:2 (n-6)10E,12Z-octadeca-10,12-dienoic acid
Conjugated Linolenic Acids (three conjugated double bonds)
α-Calendic acid18:3 (n-6)8E,10E,12Z-octadecatrienoic acid
β-Calendic acid18:3 (n-6)8E,10E,12E-octadecatrienoic acid
Jacaric acid18:3 (n-6)8Z,10E,12Z-octadecatrienoic acid
α-Eleostearic acid18:3 (n-5)9Z,11E,13E-octadeca-9,11,13-trienoic acid
β-Eleostearic acid18:3 (n-5)9E,11E,13E-octadeca-9,11,13-trienoic acid
Catalpic acid18:3 (n-5)9Z,11Z,13E-octadeca-9,11,13-trienoic acid
Punicic acid18:3 (n-5)9Z,11E,13Z-octadeca-9,11,13-trienoic acid
Other
Rumelenic acid18:3 (n-3)9E,11Z,15E-octadeca-9,11,15-trienoic acid
α-Parinaric acid18:4 (n-3)9E,11Z,13Z,15E-octadeca-9,11,13,15-tetraenoic acid
β-Parinaric acid18:4 (n-3)all trans-octadeca-9,11,13,15-tetraenoic acid
Bosseopentaenoic acid20:5 (n-6)5Z,8Z,10E,12E,14Z-eicosapentaenoic acid

Other polyunsaturated fatty acids

[edit]
Common nameLipid nameChemical name
Pinolenic acid18:3 (n-6)(5Z,9Z,12Z)-octadeca-5,9,12-trienoic acid
Sciadonic acid20:3 (n-6)(5Z,11Z,14Z)-eicosa-5,11,14-trienoic acid

Function and effects

[edit]

The biological effects of the ω-3 and ω-6 fatty acids are largely mediated by their mutual interactions, seeEssential fatty acid interactions for detail.

Health

[edit]

Potential benefits

[edit]

Because of their effects in the diet, unsaturated fats (monounsaturated and polyunsaturated) are often referred to asgood fats; while saturated fats are sometimes referred to asbad fats. Some fat is needed in the diet, but it is usually considered that fats should not be consumed excessively, unsaturated fats should be preferred, and saturated fats in particular should be limited.[9][10][11][12]

In preliminary research,omega-3 fatty acids in algal oil, fish oil, fish and seafood have been shown to lower the risk ofheart attacks.[13] Other preliminary research indicates thatomega-6 fatty acids insunflower oil andsafflower oil may also reduce the risk of cardiovascular disease.[14]

Among omega-3 fatty acids, neither long-chain nor short-chain forms were consistently associated with breast cancer risk. High levels ofdocosahexaenoic acid (DHA), however, the most abundant omega-3 polyunsaturated fatty acid in erythrocyte (red blood cell) membranes, were associated with a reduced risk of breast cancer.[15]DHA is vital for thegrey matter structure of the human brain, as well as retinal stimulation andneurotransmission.[1]

Contrary to conventional advice, an evaluation of evidence from 1966–1973 pertaining to the health impacts of replacing dietarysaturated fat withlinoleic acid found that participants in the group doing so hadincreased rates of death from all causes, coronary heart disease, and cardiovascular disease.[16] Although this evaluation was disputed by many scientists,[17] it fueled debate over worldwide dietary advice to substitute polyunsaturated fats for saturated fats.[18]

Takingisotope-reinforced polyunsaturated fatty acids, for exampledeuterated linoleic acid where two atoms of hydrogen substituted with its heavy isotope deuterium, with food (heavy isotope diet) can suppress lipid peroxidation and prevent or treat the associated diseases.[19][20]

Pregnancy

[edit]

Polyunsaturated fat supplementation does not decrease the incidence of pregnancy-related disorders, such ashypertension orpreeclampsia, but may increase the length ofgestation slightly and decreased the incidence of early premature births.[1]

Expert panels in the United States and Europe recommend that pregnant and lactating women consume higher amounts of polyunsaturated fats than the general population to enhance the DHA status of the fetus and newborn.[1]

Cancer

[edit]

Results fromobservational clinical trials on polyunsaturated fat intake and cancer have been inconsistent and vary by numerous factors of cancer incidence, including gender and genetic risk.[13] Some studies have shown associations between higher intakes and/or blood levels of polyunsaturated fat omega-3s and a decreased risk of certain cancers, includingbreast andcolorectal cancer, while other studies found no associations with cancer risk.[13][21]

Dietary sources

[edit]
Properties ofvegetable oils[22]
The nutritional values are expressed as percent (%) by mass of total fat.
TypeProcessing
treatment[23]
Saturated
fatty acids
Monounsaturated
fatty acids
Polyunsaturated
fatty acids
Smoke point
Total[22]Oleic
acid
(ω−9)
Total[22]α-Linolenic
acid
(ω−3)
Linoleic
acid
(ω−6)
ω−6:3
ratio
Avocado[24]11.670.667.913.5112.512.5:1250 °C (482 °F)[25]
Brazil nut[26]24.832.731.342.00.141.9419:1208 °C (406 °F)[27]
Canola[28]7.463.361.828.19.118.62:1204 °C (400 °F)[29]
Coconut[30]82.56.361.70.0191.6888:1175 °C (347 °F)[27]
Corn[31]12.927.627.354.715858:1232 °C (450 °F)[29]
Cottonseed[32]25.917.81951.915454:1216 °C (420 °F)[29]
Cottonseed[33]hydrogenated93.61.50.60.20.31.5:1
Flaxseed/linseed[34]9.018.41867.853130.2:1107 °C (225 °F)
Grape seed[35] 9.616.115.8  69.90.1069.6very high216 °C (421 °F)
Hemp seed[36]7.09.09.082.022.054.02.5:1166 °C (330 °F)[37]
High-oleic safflower oil[38]7.575.275.212.8012.8very high212 °C (414 °F)[27]
Olive (extra virgin)[39]13.873.071.310.50.79.814:1193 °C (380 °F)[27]
Palm[40]49.337.0409.30.29.145.5:1235 °C (455 °F)
Palm[41]hydrogenated88.25.70
Peanut[42]16.257.155.419.90.31819.661.6:1232 °C (450 °F)[29]
Rice bran oil2538.438.436.62.234.4[43]15.6:1232 °C (450 °F)[44]
Sesame[45]14.239.739.341.70.341.3138:1
Soybean[46]15.622.822.657.77517.3:1238 °C (460 °F)[29]
Soybean[47]partially hydrogenated14.943.042.537.62.634.913.4:1
Sunflower[48]8.9963.462.920.70.1620.5128:1227 °C (440 °F)[29]
Walnut oil[49]unrefined9.122.822.263.310.452.95:1160 °C (320 °F)[50]

Polyunsaturated fat can be found mostly in nuts, seeds, fish, seed oils, andoysters.[1] "Unsaturated" refers to the fact that the molecules contain less than the maximum amount of hydrogen (if there were no double bonds). These materials exist ascis ortransisomers depending on the geometry of the double bond.

FoodSaturatedMono-
unsaturated
Poly-
unsaturated
As weight percent (%) of total fat
Cooking oils
Algal oil[51]4924
Canola[52]86428
Coconut oil87130
Corn oil132459
Cottonseed oil[52]271954
Olive oil[53]147311
Palm kernel oil[52]86122
Palm oil[52]513910
Peanut oil[54]174632
Rice bran oil253837
Safflower oil, high oleic[55]67514
Safflower oil, linoleic[52][56]61475
Soybean oil152458
Sunflower oil[57]112069
Mustard oil115921
Dairy products
Butterfat[52]66304
Cheese, regular64293
Cheese, light60300
Ice cream, gourmet62294
Ice cream, light62294
Milk, whole62284
Milk, 2%62300
Whipping cream[58]*66265
Meats
Beef33385
Ground sirloin38444
Pork chop35448
Ham354916
Chicken breast293421
Chicken342330
Turkey breast302030
Turkey drumstick322230
Fish, orange roughy231546
Salmon283328
Hot dog, beef42485
Hot dog, turkey284022
Burger, fast food36446
Cheeseburger, fast food43407
Breaded chicken sandwich203932
Grilled chicken sandwich264220
Sausage, Polish374611
Sausage, turkey284022
Pizza, sausage413220
Pizza, cheese60285
Nuts
Almonds dry roasted96521
Cashews dry roasted205917
Macadamia dry roasted15792
Peanut dry roasted145031
Pecans dry roasted86225
Flaxseeds, ground82365
Sesame seeds143844
Soybeans142257
Sunflower seeds111966
Walnuts dry roasted92363
Sweets and baked goods
Candy, chocolate bar59333
Candy, fruit chews144438
Cookie, oatmeal raisin224727
Cookie, chocolate chip354218
Cake, yellow602510
Pastry, Danish503114
Fats added during cooking or at the table
Butter, stick63293
Butter, whipped62294
Margarine, stick183939
Margarine, tub163349
Margarine, light tub194633
Lard394511
Shortening254526
Chicken fat304521
Beef fat41433
Goose fat[59]335511
Dressing, blue cheese165425
Dressing, light Italian142458
Other
Egg yolk fat[60]364416
Avocado[61]167113
Unless else specified in boxes, then reference is:[citation needed]
* 3% is trans fats

Non-dietary applications

[edit]

PUFA's are significant components ofalkyd resins, which are used incoatings.[3]

References

[edit]
  1. ^abcdef"Essential Fatty Acids". Micronutrient Information Center, Oregon State University, Corvallis, OR. May 2014. Retrieved24 May 2017.
  2. ^"Omega-3 fatty acids, fish oil, alpha-linolenic acid". Mayo Clinic. 2017. Retrieved24 May 2017.
  3. ^abcdeAnneken, David J.; Both, Sabine; Christoph, Ralf; Fieg, Georg; Steinberner, Udo; Westfechtel, Alfred (2006). "Fatty Acids".Ullmann's Encyclopedia of Industrial Chemistry.doi:10.1002/14356007.a10_245.pub2.ISBN 3527306730.
  4. ^Buckley MT, et al. (2017)."Selection in Europeans on Fatty Acid Desaturases Associated with Dietary Changes".Mol Biol Evol.34 (6):1307–1318.doi:10.1093/molbev/msx103.PMC 5435082.PMID 28333262.
  5. ^abFeussner, Ivo; Wasternack, Claus (2002). "The Lipoxygenase Pathway".Annual Review of Plant Biology.53:275–297.doi:10.1146/annurev.arplant.53.100301.135248.PMID 12221977.
  6. ^Jiao, Jingjing; Zhang, Yu (2013). "Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals".Chemical Reviews.113 (5):3799–3814.doi:10.1021/cr300007p.PMID 23421688.
  7. ^Baggott, James (1997).The divinylmethane pattern in fatty acids. Salt Lake City, UT: Knowledge Weavers.
  8. ^"National nutrient database for standard reference, release 23". United States Department of Agriculture, Agricultural Research Service. 2011. Archived fromthe original on 2015-03-03. Retrieved2009-02-22.
  9. ^"Fats explained"(PDF).HEART UK – The Cholesterol Charity. Retrieved20 February 2019.
  10. ^"Key Recommendations: Components of Healthy Eating Patterns".Dietary Guidelines 2015-2020. Retrieved20 February 2019.
  11. ^"Live Well, Eat well, Fat: the facts".NHS. Retrieved20 February 2019.
  12. ^"Dietary Guidelines for Indians - A Manual"(PDF).Indian Council of Medical Research, National Institute of Nutrition. Archived fromthe original(PDF) on 2018-12-22. Retrieved2019-02-20.
  13. ^abc"Omega-3 Fatty Acids and Health: Fact Sheet for Health Professionals". US National Institutes of Health, Office of Dietary Supplements. 2 November 2016. Retrieved5 April 2017.
  14. ^Willett WC (September 2007). "The role of dietary n-6 fatty acids in the prevention of cardiovascular disease".Journal of Cardiovascular Medicine.8 (Suppl 1): S42-5.doi:10.2459/01.JCM.0000289275.72556.13.PMID 17876199.S2CID 1420490.
  15. ^Pala V, Krogh V, Muti P, Chajès V, Riboli E, Micheli A, Saadatian M, Sieri S, Berrino F (July 2001). "Erythrocyte membrane fatty acids and subsequent breast cancer: a prospective Italian study".Journal of the National Cancer Institute.93 (14):1088–95.doi:10.1093/jnci/93.14.1088.PMID 11459870.
  16. ^Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, Ringel A, Davis JM, Hibbeln JR (February 2013)."Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis".BMJ.346: e8707.doi:10.1136/bmj.e8707.PMC 4688426.PMID 23386268.
  17. ^Interview: Walter Willett (2017)."Research Review: Old data on dietary fats in context with current recommendations: Comments on Ramsden et al. in the British Medical Journal". TH Chan School of Public Health, Harvard University, Boston. Retrieved24 May 2017.
  18. ^Weylandt KH, Serini S, Chen YQ, Su HM, Lim K, Cittadini A, Calviello G (2015)."Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence".BioMed Research International.2015: 143109.doi:10.1155/2015/143109.PMC 4537707.PMID 26301240.
  19. ^Hill, S.; et al. (2012)."Small amounts of isotope-reinforced PUFAs suppress lipid autoxidation".Free Radical Biology & Medicine.53 (4):893–906.doi:10.1016/j.freeradbiomed.2012.06.004.PMC 3437768.PMID 22705367.
  20. ^Shchepinov, M. S. (2020)."Polyunsaturated Fatty Acid Deuteration against Neurodegeneration".Trends in Pharmacological Sciences.41 (4):236–248.doi:10.1016/j.tips.2020.01.010.PMID 32113652.S2CID 211724987.
  21. ^Patterson RE, Flatt SW, Newman VA, Natarajan L, Rock CL, Thomson CA, Caan BJ, Parker BA, Pierce JP (February 2011)."Marine fatty acid intake is associated with breast cancer prognosis".The Journal of Nutrition.141 (2):201–6.doi:10.3945/jn.110.128777.PMC 3021439.PMID 21178081.
  22. ^abc"FoodData Central". United States Department of Agriculture. 1 April 2019. All values in this table are from this database unless otherwise cited or when italicized as the simple arithmetic sum of other component columns.
  23. ^"USDA Specifications for Vegetable Oil Margarine Effective August 28, 1996"(PDF).
  24. ^"Avocado oil, fat composition, 100 g". FoodData Central, United States Department of Agriculture. 1 April 2019. Retrieved23 February 2025.
  25. ^Wong M, Requejo-Jackman C, Woolf A (April 2010)."What is unrefined, extra virgin cold-pressed avocado oil?".Aocs.org. The American Oil Chemists' Society. Retrieved26 December 2019.
  26. ^"Brazil nut oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  27. ^abcdKatragadda, Harinageswara Rao; Fullana, Andrés; Sidhu, Sukh; Carbonell-Barrachina, Ángel A. (May 2010). "Emissions of volatile aldehydes from heated cooking oils".Food Chemistry.120 (1):59–65.doi:10.1016/j.foodchem.2009.09.070.
  28. ^"Canola oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  29. ^abcdefWolke RL (May 16, 2007)."Where There's Smoke, There's a Fryer".The Washington Post. RetrievedMarch 5, 2011.
  30. ^"Coconut oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  31. ^"Corn oil, industrial and retail, all purpose salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  32. ^"Cottonseed oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  33. ^"Cottonseed oil, industrial, fully hydrogenated, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  34. ^"Linseed/Flaxseed oil, cold pressed, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  35. ^"Grape seed oil, fat composition, 100 g". FoodData Central, United States Department of Agriculture. 1 April 2019. Retrieved23 February 2025.
  36. ^Callaway, James; Schwab, Ursula; Harvima, Ilkka; Halonen, Pirjo; Mykkänen, Otto; Hyvönen, Pekka; Järvinen, Tomi (April 2005). "Efficacy of dietary hempseed oil in patients with atopic dermatitis".Journal of Dermatological Treatment.16 (2):87–94.doi:10.1080/09546630510035832.PMID 16019622.
  37. ^Melina V."Smoke points of oils"(PDF).veghealth.com. The Vegetarian Health Institute.
  38. ^"Safflower oil, salad or cooking, high oleic, primary commerce, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  39. ^"Olive oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  40. ^"Palm oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  41. ^"Palm oil, industrial, fully hydrogenated, filling fat, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  42. ^"Oil, peanut".FoodData Central. usda.gov.
  43. ^Orthoefer, Frank T. (2020). "Rice Bran Oil".Bailey's Industrial Oil and Fat Products. pp. 1–25.doi:10.1002/047167849X.bio015.pub2.ISBN 978-0-471-38460-1.
  44. ^"Rice bran oil". RITO Partnership. Retrieved22 January 2021.
  45. ^"Oil, sesame, salad or cooking". FoodData Central.fdc.nal.usda.gov. 1 April 2019.
  46. ^"Soybean oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  47. ^"Soybean oil, salad or cooking, (partially hydrogenated), fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved6 September 2017.
  48. ^"FoodData Central".fdc.nal.usda.gov.
  49. ^"Walnut oil, fat composition, 100 g". US National Nutrient Database, United States Department of Agriculture.
  50. ^"Smoke Point of Oils".Baseline of Health. Jonbarron.org.
  51. ^"Thrive Culinary Algae Oil". Retrieved7 January 2019.
  52. ^abcdefAnderson D."Fatty acid composition of fats and oils"(PDF). Colorado Springs: University of Colorado, Department of Chemistry. RetrievedApril 8, 2017.
  53. ^"NDL/FNIC Food Composition Database Home Page". United States Department of Agriculture, Agricultural Research Service. RetrievedMay 21, 2013.
  54. ^"Basic Report: 04042, Oil, peanut, salad or cooking". USDA. Archived fromthe original on March 9, 2016. Retrieved16 January 2015.
  55. ^"Oil, vegetable safflower, oleic".nutritiondata.com. Condé Nast. Retrieved10 April 2017.
  56. ^"Oil, vegetable safflower, linoleic".nutritiondata.com. Condé Nast. Retrieved10 April 2017.
  57. ^"Oil, vegetable, sunflower".nutritiondata.com. Condé Nast. Retrieved27 September 2010.
  58. ^USDA Basic Report Cream, fluid, heavy whipping
  59. ^"Nutrition And Health".The Goose Fat Information Service.
  60. ^"Egg, yolk, raw, fresh".nutritiondata.com. Condé Nast. Retrieved24 August 2009.
  61. ^"09038, Avocados, raw, California".National Nutrient Database for Standard Reference, Release 26. United States Department of Agriculture, Agricultural Research Service. Archived fromthe original on January 10, 2014. Retrieved14 August 2014.

Sources

[edit]
Edible fats and oils
Fats
Pork fats
Beef/Mutton fats
Dairy fats
Poultry fats
Other animal fats
Vegetable fats
Oils
Marine oils
Vegetable
oils
(List)
Fruit oils
Nut oils
Seed oils
Retrieved from "https://en.wikipedia.org/w/index.php?title=Polyunsaturated_fat&oldid=1270699382"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp