Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pépin's test

From Wikipedia, the free encyclopedia

Inmathematics,Pépin's test is aprimality test, which can be used to determine whether aFermat number isprime. It is a variant ofProth's test. The test is named after a French mathematician,Théophile Pépin.

Description of the test

[edit]

LetFn=22n+1{\displaystyle F_{n}=2^{2^{n}}+1} be thenth Fermat number. Pépin's test states that forn > 0,

Fn{\displaystyle F_{n}} is prime if and only if3(Fn1)/21(modFn).{\displaystyle 3^{(F_{n}-1)/2}\equiv -1{\pmod {F_{n}}}.}

The expression3(Fn1)/2{\displaystyle 3^{(F_{n}-1)/2}} can be evaluated moduloFn{\displaystyle F_{n}} byrepeated squaring. This makes the test a fastpolynomial-time algorithm. However, Fermat numbers grow so rapidly that only a handful of Fermat numbers can be tested in a reasonable amount of time and space.

Other bases may be used in place of 3. These bases are:

3, 5, 6, 7, 10, 12, 14, 20, 24, 27, 28, 39, 40, 41, 45, 48, 51, 54, 56, 63, 65, 75, 78, 80, 82, 85, 90, 91, 96, 102, 105, 108, 112, 119, 125, 126, 130, 147, 150, 156, 160, ... (sequenceA129802 in theOEIS).

The primes in the above sequence are calledElite primes, they are:

3, 5, 7, 41, 15361, 23041, 26881, 61441, 87041, 163841, 544001, 604801, 6684673, 14172161, 159318017, 446960641, 1151139841, 3208642561, 38126223361, 108905103361, 171727482881, 318093312001, 443069456129, 912680550401, ... (sequenceA102742 in theOEIS)

For integerb > 1, baseb may be used if and only if only a finite number of Fermat numbersFn satisfies that(bFn)=1{\displaystyle \left({\frac {b}{F_{n}}}\right)=1}, where(bFn){\displaystyle \left({\frac {b}{F_{n}}}\right)} is theJacobi symbol.

In fact, Pépin's test is the same as theEuler-Jacobi test for Fermat numbers, since the Jacobi symbol(bFn){\displaystyle \left({\frac {b}{F_{n}}}\right)} is −1, i.e. there are no Fermat numbers which are Euler-Jacobi pseudoprimes to these bases listed above.

Proof of correctness

[edit]

Sufficiency: assume that the congruence

3(Fn1)/21(modFn){\displaystyle 3^{(F_{n}-1)/2}\equiv -1{\pmod {F_{n}}}}

holds. Then3Fn11(modFn){\displaystyle 3^{F_{n}-1}\equiv 1{\pmod {F_{n}}}}, thus themultiplicative order of 3 moduloFn{\displaystyle F_{n}} dividesFn1=22n{\displaystyle F_{n}-1=2^{2^{n}}}, which is a power of two. On the other hand, the order does not divide(Fn1)/2{\displaystyle (F_{n}-1)/2}, and therefore it must be equal toFn1{\displaystyle F_{n}-1}. In particular, there are at leastFn1{\displaystyle F_{n}-1} numbers belowFn{\displaystyle F_{n}} coprime toFn{\displaystyle F_{n}}, and this can happen only ifFn{\displaystyle F_{n}} is prime.

Necessity: assume thatFn{\displaystyle F_{n}} is prime. ByEuler's criterion,

3(Fn1)/2(3Fn)(modFn){\displaystyle 3^{(F_{n}-1)/2}\equiv \left({\frac {3}{F_{n}}}\right){\pmod {F_{n}}}},

where(3Fn){\displaystyle \left({\frac {3}{F_{n}}}\right)} is theLegendre symbol. By repeated squaring, we find that22n1(mod3){\displaystyle 2^{2^{n}}\equiv 1{\pmod {3}}}, thusFn2(mod3){\displaystyle F_{n}\equiv 2{\pmod {3}}}, and(Fn3)=1{\displaystyle \left({\frac {F_{n}}{3}}\right)=-1}.AsFn1(mod4){\displaystyle F_{n}\equiv 1{\pmod {4}}}, we conclude(3Fn)=1{\displaystyle \left({\frac {3}{F_{n}}}\right)=-1} from thelaw of quadratic reciprocity.

Historical Pépin tests

[edit]

Because of the sparsity of the Fermat numbers, the Pépin test has only been run eight times (on Fermat numbers whose primality statuses were not already known).[1][2][3]Mayer, Papadopoulos and Crandall speculate that in fact, because of the size of the still undetermined Fermat numbers, it will take considerable advances in technology before any more Pépin tests can be run in a reasonable amount of time.[4]

YearProversFermat numberPépin test resultFactor found later?
1905Morehead &WesternF7{\displaystyle F_{7}}compositeYes (1970)
1909Morehead & WesternF8{\displaystyle F_{8}}compositeYes (1980)
1952RobinsonF10{\displaystyle F_{10}}compositeYes (1953)
1960PaxsonF13{\displaystyle F_{13}}compositeYes (1974)
1961Selfridge & HurwitzF14{\displaystyle F_{14}}compositeYes (2010)
1987Buell &YoungF20{\displaystyle F_{20}}compositeNo
1993Crandall, Doenias, Norrie & YoungF22{\displaystyle F_{22}}compositeYes (2010)
1999Mayer, Papadopoulos & CrandallF24{\displaystyle F_{24}}compositeNo

Notes

[edit]
  1. ^Conjecture 4. Fermat primes are finite - Pepin tests story, according to Leonid Durman
  2. ^Wilfrid Keller:Fermat factoring status
  3. ^R. M. Robinson (1954):Mersenne and Fermat numbers,doi:10.2307/2031878
  4. ^Richard E. Crandall, Ernst W. Mayer & Jason S. Papadopoulos (2003):The twenty-fourth Fermat number is composite,doi:10.1090/S0025-5718-02-01479-5

References

[edit]
  • P. Pépin,Sur la formule22n+1{\displaystyle 2^{2^{n}}+1},Comptes rendus de l'Académie des Sciences de Paris 85 (1877), pp. 329–333.

External links

[edit]
Primality tests
Prime-generating
Integer factorization
Multiplication
Euclideandivision
Discrete logarithm
Greatest common divisor
Modular square root
Other algorithms
  • Italics indicate that algorithm is for numbers of special forms
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pépin%27s_test&oldid=1226039334"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp