| Order-4 hexagonal tiling | |
|---|---|
Poincaré disk model of thehyperbolic plane | |
| Type | Hyperbolic regular tiling |
| Vertex configuration | 64 |
| Schläfli symbol | {6,4} |
| Wythoff symbol | 4 | 6 2 |
| Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
| Symmetry group | [6,4], (*642) |
| Dual | Order-6 square tiling |
| Properties | Vertex-transitive,edge-transitive,face-transitive |
Ingeometry, theorder-4 hexagonal tiling is aregular tiling of thehyperbolic plane. It hasSchläfli symbol of {6,4}.
This tiling represents a hyperbolickaleidoscope of 6 mirrors defining a regular hexagon fundamental domain. This symmetry byorbifold notation is called *222222 with 6 order-2 mirror intersections. InCoxeter notation can be represented as [6*,4], removing two of three mirrors (passing through the hexagon center). Adding a bisecting mirror through 2 vertices of a hexagonal fundamental domain defines a trapezohedral*4422 symmetry. Adding 3 bisecting mirrors through the vertices defines*443 symmetry. Adding 3 bisecting mirrors through the edge defines*3222 symmetry. Adding all 6 bisectors leads to full*642 symmetry.
*222222 | *443 | *3222 | *642 |
There are 7 distinctuniform colorings for the order-4 hexagonal tiling. They are similar to 7 of theuniform colorings of the square tiling, but exclude 2 cases with order-2 gyrational symmetry. Four of them have reflective constructions andCoxeter diagrams while three of them are undercolorings.
| 1 color | 2 colors | 3 and 2 colors | 4, 3 and 2 colors | ||||
|---|---|---|---|---|---|---|---|
| Uniform Coloring | (1111) | (1212) | (1213) | (1113) | (1234) | (1123) | (1122) |
| Symmetry | [6,4] (*642) ![]() ![]() ![]() ![]() ![]() | [6,6] (*662) ![]() ![]() =![]() ![]() ![]() ![]() ![]() | [(6,6,3)] = [6,6,1+] (*663) ![]() ![]() =![]() ![]() ![]() ![]() ![]() | [1+,6,6,1+] (*3333) ![]() ![]() =![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() | |||
| Symbol | {6,4} | r{6,6} = {6,4}1/2 | r(6,3,6) = r{6,6}1/2 | r{6,6}1/4 | |||
| Coxeter diagram | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() =![]() ![]() ![]() ![]() ![]() | ![]() ![]() =![]() ![]() ![]() ![]() ![]() | ![]() ![]() =![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() | |||
Theregular map {6,4}3 or {6,4}(4,0) can be seen as a 4-coloring on the {6,4} tiling. It also has a representation as apetrial octahedron, {3,4}π, an abstract polyhedron with vertices and edges of anoctahedron, but instead connected by 4Petrie polygon faces.
This tiling is topologically related as a part of sequence of regular tilings withhexagonal faces, starting with thehexagonal tiling, withSchläfli symbol {6,n}, andCoxeter diagram



, progressing to infinity.
| *n62 symmetry mutation of regular tilings: {6,n} | ||||||||
|---|---|---|---|---|---|---|---|---|
| Spherical | Euclidean | Hyperbolic tilings | ||||||
{6,2} | {6,3} | {6,4} | {6,5} | {6,6} | {6,7} | {6,8} | ... | {6,∞} |
This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with four faces per vertex, starting with theoctahedron, withSchläfli symbol {n,4}, and Coxeter diagram



, with n progressing to infinity.
| *n42 symmetry mutation of regular tilings: {n,4} | |||||||
|---|---|---|---|---|---|---|---|
| Spherical | Euclidean | Hyperbolic tilings | |||||
| 24 | 34 | 44 | 54 | 64 | 74 | 84 | ...∞4 |
| Symmetry mutation of quasiregular tilings: (6.n)2 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry *6n2 [n,6] | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||||||
| *632 [3,6] | *642 [4,6] | *652 [5,6] | *662 [6,6] | *762 [7,6] | *862 [8,6]... | *∞62 [∞,6] | [iπ/λ,6] | ||||
| Quasiregular figures configuration | 6.3.6.3 | 6.4.6.4 | 6.5.6.5 | 6.6.6.6 | 6.7.6.7 | 6.8.6.8 | 6.∞.6.∞ | 6.∞.6.∞ | |||
| Dual figures | |||||||||||
| Rhombic figures configuration | V6.3.6.3 | V6.4.6.4 | V6.5.6.5 | V6.6.6.6 | V6.7.6.7 | V6.8.6.8 | V6.∞.6.∞ | ||||
| Uniform tetrahexagonal tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry:[6,4], (*642) (with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry) | |||||||||||
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | |||||
| {6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
| Uniform duals | |||||||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | |||||
| V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
| Alternations | |||||||||||
| [1+,6,4] (*443) | [6+,4] (6*2) | [6,1+,4] (*3222) | [6,4+] (4*3) | [6,4,1+] (*662) | [(6,4,2+)] (2*32) | [6,4]+ (642) | |||||
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | |||||
| h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} | |||||
| Uniform hexahexagonal tilings | ||||||
|---|---|---|---|---|---|---|
| Symmetry:[6,6], (*662) | ||||||
![]() ![]() ![]() ![]() =![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() =![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() =![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() =![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() =![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() =![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() =![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
| {6,6} = h{4,6} | t{6,6} = h2{4,6} | r{6,6} {6,4} | t{6,6} = h2{4,6} | {6,6} = h{4,6} | rr{6,6} r{6,4} | tr{6,6} t{6,4} |
| Uniform duals | ||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() |
| V66 | V6.12.12 | V6.6.6.6 | V6.12.12 | V66 | V4.6.4.6 | V4.12.12 |
| Alternations | ||||||
| [1+,6,6] (*663) | [6+,6] (6*3) | [6,1+,6] (*3232) | [6,6+] (6*3) | [6,6,1+] (*663) | [(6,6,2+)] (2*33) | [6,6]+ (662) |
![]() ![]() ![]() ![]() =![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() =![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() =![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() |
| h{6,6} | s{6,6} | hr{6,6} | s{6,6} | h{6,6} | hrr{6,6} | sr{6,6} |
| Similar H2 tilings in *3232 symmetry | ||||||||
|---|---|---|---|---|---|---|---|---|
| Coxeter diagrams | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ||||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() | ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | ![]() ![]() ![]() | ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |
![]() ![]() ![]() | ![]() ![]() ![]() | ![]() ![]() ![]() | ![]() ![]() ![]() | |||||
| Vertex figure | 66 | (3.4.3.4)2 | 3.4.6.6.4 | 6.4.6.4 | ||||
| Image | ||||||||
| Dual | ||||||||
| Uniform tilings in symmetry *3222 | ||||
|---|---|---|---|---|
![]() ![]() 64 | ![]() ![]() 6.6.4.4 | ![]() ![]() (3.4.4)2 | ![]() ![]() 4.3.4.3.3.3 | |
![]() ![]() 6.6.4.4 | ![]() ![]() 6.4.4.4 | ![]() ![]() 3.4.4.4.4 | ||
![]() ![]() (3.4.4)2 | ![]() ![]() 3.4.4.4.4 | ![]() ![]() 46 | ||