Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Olfactory receptor neuron

From Wikipedia, the free encyclopedia
Transduction nerve cell within the olfactory system
Olfactory receptor neuron
Labels in German. "Zellen" = "cell", "riech" = "smell", "Riechnerv" =olfactory nerve, "cillien" =cilia.
Details
SystemSmell
LocationOlfactory epithelium in thenose
ShapeBipolar sensory receptor
FunctionDetect traces of chemicals in inhaled air (sense of smell)
NeurotransmitterGlutamate[1]
Presynaptic connectionsNone
Postsynaptic connectionsOlfactory bulb
Identifiers
MeSHD018034
NeuroLex IDnifext_116
THH3.11.07.0.01003
FMA67860
Anatomical terms of neuroanatomy
Plan of olfactory neurons
Olfactory sensory neurons (OSNs) express odorant receptors. The axons of OSNs expressing the same odorant receptors converge onto the same glomerulus at the olfactory bulb, allowing for the organization of olfactory information.

Anolfactory receptor neuron (ORN), also called anolfactory sensory neuron (OSN), is asensory neuron within theolfactory system.[2]

Structure

[edit]

Humans have between 10 and 20 million olfactory receptor neurons (ORNs).[3] Invertebrates, ORNs arebipolar neurons withdendrites facing the external surface of thecribriform plate with axons that pass through thecribriform foramina with terminal end at olfactory bulbs. The ORNs are located in theolfactory epithelium in the nasal cavity. The cell bodies of the ORNs are distributed among thestratified layers of the olfactory epithelium.[4]

Many tiny hair-like non-motilecilia protrude from the olfactory receptor cell'sdendrites. The dendrites extend to the olfactory epithelial surface and each ends in a dendritic knob from which around 20 to 35 cilia protrude. The cilia have a length of up to 100 micrometres and with the cilia from other dendrites form a meshwork in the olfactorymucus.[5] The surface of the cilia is covered witholfactory receptors, a type ofG protein-coupled receptor. Each olfactory receptor cellexpresses only one type of olfactory receptor (OR), but many separate olfactory receptor cells express ORs which bind the same set of odors. The axons of olfactory receptor cells which express the same OR converge to formglomeruli in theolfactory bulb.[6]

Function

[edit]

ORs, which are located on the membranes of the cilia have been classified as a complex type ofligand-gated metabotropic channels.[7] There are approximately 1000 different genes that code for the ORs, making them the largest gene family. Anodorant will dissolve into the mucus of the olfactory epithelium and then bind to an OR. ORs can bind to a variety of odor molecules, with varying affinities. The difference in affinities causes differences in activation patterns resulting in unique odorant profiles.[8][9] The activated OR in turn activates the intracellular G-protein, GOLF (GNAL),adenylate cyclase and production ofcyclic AMP (cAMP) opension channels in thecell membrane, resulting in an influx ofsodium andcalcium ions into the cell, and an efflux ofchloride ions. This influx of positive ions and efflux of negative ions causes the neuron to depolarize, generating anaction potential.

Desensitization of olfactory neuron

Desensitization

[edit]

The olfactory receptor neuron has a fast working negative feedback response upondepolarization. When the neuron is depolarizing, theCNG ion channel is open allowingsodium andcalcium to rush into the cell. The influx of calcium begins a cascade of events within the cell. Calcium first binds to calmodulin to formCaM. CaM will then bind to the CNG channel and close it, stopping the sodium and calcium influx.[10]CaMKII will be activated by the presence of CaM, which will phosphorylateACIII and reduce cAMP production.[11] CaMKII will also activatephosphodiesterase, which will then hydrolyze cAMP.[12] The effect of this negative feedback response inhibits the neuron from further activation when another odor molecule is introduced.

Number of distinguishable odors

[edit]

A widely publicized study suggested that humans can detect more than one trillion different odors.[13] This finding has been disputed. Critics argued that the methodology used for the estimation was fundamentally flawed, showing that applying the same argument for better-understood sensory modalities, such as vision or audition, leads to wrong conclusions.[14] Other researchers have also showed that the result is extremely sensitive to the precise details of the calculation, with small variations changing the result over dozens of orders of magnitude, possibly going as low as a few thousand.[15] The authors of the original study have argued that their estimate holds as long as it is assumed that odor space is sufficiently high-dimensional.[16]

Other animals

[edit]
See also:Odor detection threshold § Variation among species

DogsCompared to humans, dogs have a larger number of olfactory receptor neurons and a larger olfactory bulb, resulting in a remarkably sensitive sense of smell, which is used by law enforcement to detect dangerous and illegal substances and biological scents, as well as by agricultural and conservation scientists to detect other living organisms, such as plant parasites, endangered animals, invasive species and even microorganisms.[17]

See also:insect olfaction
[icon]
This sectionneeds expansion. You can help byadding to it.(February 2018)

See also

[edit]

References

[edit]
  1. ^Berkowicz, D. A.; Trombley, P. Q.; Shepherd, G. M. (1994). "Evidence for glutamate as the olfactory receptor cell neurotransmitter".Journal of Neurophysiology.71 (6):2557–61.doi:10.1152/jn.1994.71.6.2557.PMID 7931535.
  2. ^Vermeulen, A; Rospars, J. P. (1998). "Dendritic integration in olfactory sensory neurons: A steady-state analysis of how the neuron structure and neuron environment influence the coding of odor intensity".Journal of Computational Neuroscience.5 (3):243–66.doi:10.1023/A:1008826827728.PMID 9663551.S2CID 19598225.
  3. ^Saladin, Kenneth (2012).Anatomy & physiology : the unity of form and function (6th ed.). McGraw-Hill. p. 593.ISBN 978-0073378251.
  4. ^Cunningham, A.M.; Manis, P.B.; Reed, R.R.; Ronnett, G.V. (1999)."Olfactory receptor neurons exist as distinct subclasses of immature and mature cells in primary culture".Neuroscience.93 (4):1301–12.doi:10.1016/s0306-4522(99)00193-1.PMID 10501454.S2CID 23634746.
  5. ^McClintock, TS; Khan, N; Xie, C; Martens, JR (5 December 2020)."Maturation of the Olfactory Sensory Neuron and Its Cilia".Chemical Senses.45 (9):805–822.doi:10.1093/chemse/bjaa070.PMC 8133333.PMID 33075817.
  6. ^McEwen, D. P (2008). "Olfactory cilia: our direct neuronal connection to the external world".Curr. Top. Dev. Biol. Current Topics in Developmental Biology.85:333–370.doi:10.1016/S0070-2153(08)00812-0.ISBN 9780123744531.PMID 19147011.
  7. ^Touhara, Kazushige (2009). "Insect Olfactory Receptor Complex Functions as a Ligand-gated Ionotropic Channel".Annals of the New York Academy of Sciences.1170 (1):177–80.Bibcode:2009NYASA1170..177T.doi:10.1111/j.1749-6632.2009.03935.x.PMID 19686133.S2CID 6336906.
  8. ^Bieri, S.; Monastyrskaia, K; Schilling, B (2004)."Olfactory Receptor Neuron Profiling using Sandalwood Odorants".Chemical Senses.29 (6):483–7.doi:10.1093/chemse/bjh050.PMID 15269120.
  9. ^Fan, Jinhong; Ngai, John (2001)."Onset of Odorant Receptor Gene Expression during Olfactory Sensory Neuron Regeneration".Developmental Biology.229 (1):119–27.doi:10.1006/dbio.2000.9972.PMID 11133158.
  10. ^Bradley, J; Reuter, D; Frings, S (2001). "Facilitation of calmodulinmediated odor adaptation by cAMP-gated channel subunits".Science.294 (5549):2176–2178.Bibcode:2001Sci...294.2176B.doi:10.1126/science.1063415.PMID 11739960.S2CID 13357941.
  11. ^Wei, J; Zhao, AZ; Chan, GC; Baker, LP; Impey, S; Beavo, JA; Storm, DR (1998)."Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in Neurons: a mechanism for attenuation of olfactory signals".Neuron.21 (3):495–504.doi:10.1016/s0896-6273(00)80561-9.PMID 9768837.S2CID 9860137.
  12. ^Yan, C; Zhao, AZ; Bentley, JK; Loughney, K; Ferguson, K; Beavo, JA (1995)."Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons".Proc Natl Acad Sci USA.92 (21):9677–9681.Bibcode:1995PNAS...92.9677Y.doi:10.1073/pnas.92.21.9677.PMC 40865.PMID 7568196.
  13. ^Bushdid, C.; Magnasco, M. O.; Vosshall, L. B.; Keller, A. (2014)."Humans Can Discriminate More than 1 Trillion Olfactory Stimuli".Science.343 (6177):1370–2.Bibcode:2014Sci...343.1370B.doi:10.1126/science.1249168.PMC 4483192.PMID 24653035.
  14. ^Meister, Markus (2015)."On the dimensionality of odor space".eLife.4 e07865.doi:10.7554/eLife.07865.PMC 4491593.PMID 26151672.
  15. ^Gerkin, Richard C.; Castro, Jason B. (2015)."The number of olfactory stimuli that humans can discriminate is still unknown".eLife.4 e08127.doi:10.7554/eLife.08127.PMC 4491703.PMID 26151673.
  16. ^Magnasco, Marcelo O.; Keller, Andreas; Vosshall, Leslie B. (2015)."On the dimensionality of olfactory space".doi:10.1101/022103.{{cite journal}}:Cite journal requires|journal= (help)
  17. ^Kokocińska-Kusiak, Agata; Woszczyło, Martyna; Zybala, Mikołaj; Maciocha, Julia; Barłowska, Katarzyna; Dzięcioł, Michał (2021-08-21)."Canine Olfaction: Physiology, Behavior, and Possibilities for Practical Applications".Animals.11 (8): 2463.doi:10.3390/ani11082463.ISSN 2076-2615.PMC 8388720.PMID 34438920.

External links

[edit]
Wikimedia Commons has media related toOlfactory receptor neurons.
Microanatomy
Olfactory nerve
Brain areas involved in smell
Lateral olfactory stria
1
2
3
4
Medial olfactory stria
General
CNS
Tissue Types
Cell Types
Neuronal
Glial
PNS
General
Connective tissues
Neuroglia
Neurons/
nerve fibers
Parts
Soma
Axon
Dendrite
Types
Afferent nerve fiber/
Sensory neuron
Efferent nerve fiber/
Motor neuron
Termination
Synapse
Sensory receptors
Retrieved from "https://en.wikipedia.org/w/index.php?title=Olfactory_receptor_neuron&oldid=1319783809"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp