Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Olenekian

Coordinates:31°57′55″N78°01′29″E / 31.9653°N 78.0247°E /31.9653; 78.0247
From Wikipedia, the free encyclopedia
Age in the Early Triassic epoch
Olenekian
249.9 – 246.7Ma
Chronology
−255 —
−250 —
−245 —
−240 —
−235 —
−230 —
−225 —
−220 —
−215 —
−210 —
−205 —
−200 —
 
 
 
 
Full recovery of woody trees[2]
Coals return[3]
Scleractinian
corals & calcified sponges[4]
Subdivision of the Triassic according to theICS, as of 2024.[5]
Vertical axis scale:Millions of years ago
Etymology
Name formalityFormal
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitAge
Stratigraphic unitStage
Time span formalityFormal
Lower boundary definitionNot formally defined
Lower boundary definition candidatesFAD of theConodontNeospathodus waageni
Lower boundary GSSP candidate section(s)Mud (Muth) village,Spiti valley,India[6]
Upper boundary definitionNot formally defined
Upper boundary definition candidates
Upper boundary GSSP candidate section(s)

In thegeologic timescale, theOlenekian is anage in theEarly Triassicepoch; inchronostratigraphy, it is astage in theLower Triassicseries. It spans the time between 249.9Ma and 246.7 Ma (million years ago).[7] The Olenekian is sometimes divided into theSmithian and theSpathian subages or substages.[8] The Olenekian follows theInduan and is followed by theAnisian (Middle Triassic).[7]

The Olenekian saw the deposition of a large part of theBuntsandstein in Europe. The Olenekian is roughly coeval with the regional Yongningzhenian Stage used inChina.

Stratigraphic definitions

[edit]

The Olenekian Stage was introduced into scientific literature by Russian stratigraphers in 1956.[9] The stage is named afterOlenëk inSiberia. Before the subdivision in Olenekian and Induan became established, both stages formed the Scythian Stage, which has since disappeared from the official timescale.

The base of the Olenekian is at the lowest occurrence of theammonoidsHedenstroemia orMeekoceras gracilitatis, and of the conodontNeospathodus waageni. It is defined as ending near the lowest occurrences ofgeneraJaponites,Paradanubites, andParacrochordiceras; and of theconodontChiosella timorensis. AGSSP (global reference profile for the base) has not been established as of December 2020.

In the 1960s, English paleontologistEdward T. Tozer (sometimes collaborating with American geologist Norman J. Silberling) crafted Triassic timescales based on North American ammonoid zones, further refining it in the following decades. Tozer's nomenclature was largely derived fromMojsisovics's work, who coined most of the Triassic stages and substages, but he redefined them using North American sites. He recommended the Lower Triassic series be divided into the Griesbachian, Dienerian, Smithian, and Spathian. The latter two roughly correspond with the Olenekian. Tozer's timescale became popular in the Americas.[10] He named the Smithian after Smith Creek onEllesmere Island, Canada (the creek itself is named after geologistJ. P. Smith). The Smithian is defined by theArctoceras bloomstrandi ammonoid zone (containsEuflemingites romunderi andJuvenites crassus) and the overlyingMeekoceras gracilitatis andWasatchites tardus subzones. He named the Spathian after Spath Creek on Ellesmere Island (this creek is named after geologistL. F. Spath), and defined it by theProcolumbites subrobustus ammonoid zone.[8]

Olenekian life

[edit]
See also:Category:Olenekian life

Life was still recovering from the severeend-Permian mass extinction. During the Olenekian, theflora changed fromlycopod dominated (e.g.Pleuromeia) togymnosperm andpteridophyte dominated.[11][12] These vegetation changes are due to global changes in temperature andprecipitation.Conifers (gymnosperms) were the dominant plants during most of theMesozoic. Among land vertebrates, thearchosaurs - a group ofdiapsid reptiles encompassingcrocodiles,pterosaurs,dinosaurs, and ultimatelybirds - first evolved fromarchosauriform ancestors during the Olenekian. This group includes ferocious predators likeErythrosuchus.

In the oceans,microbial reefs were common during the Early Triassic, possibly due to lack of competition withmetazoan reef builders as a result of the extinction.[13] However, transient metazoan reefs reoccurred during the Olenekian wherever permitted by environmental conditions.[14]Ammonoids andconodonts diversified, but both suffered losses during the Smithian-Spathian boundary extinction (see below)[15] at the end of the Smithian subage.

Ray-finned fishes largely remained unaffected by the Permian-Triassic extinction event.Coelacanths show their highest post-Devonian diversity during the Early Triassic.[16][17] Many fish genera show acosmopolitan distribution during theInduan and Olenekian, such asAustralosomus,Birgeria,Parasemionotidae,Pteronisculus,Ptycholepidae,Saurichthys andWhiteia. This is well exemplified in theGriesbachian (earlyInduan) aged fish assemblages of theWordie Creek Formation (EastGreenland),[18][19] theDienerian (lateInduan) aged assemblages of theMiddle Sakamena Formation (Madagascar),[20]Candelaria Formation (Nevada, United States),[21] andMikin Formation (Himachal Pradesh, India),[22] andDaye Formation (Guizhou, China),[23] and the Smithian aged assemblages of theVikinghøgda Formation (Spitsbergen, Norway),[24][25][26] andThaynes Group (westernUnited States),[27][28] andHelongshan Formation (Anhui, China),[29] and several Early Triassic layers of theSulphur Mountain Formation (westernCanada).[30] Ray-finned fishes diversified after the mass extinction and reached peak diversity during theMiddle Triassic. This diversification is, however, obscured by ataphonomic megabias (Spathian-Bithynian Gap, SBG)[31] during the late Olenekian and early middleAnisian. The earliest large durophagous neopterygian is known from the SBG, suggesting an early onset of the Triassic actinopterygian revolution.[32]

Olenekianchondrichthyan fishes includehybodonts andneoselachians,[24][33][34] but also a few surviving lineages ofeugeneodontidholocephalians,[35] a mainly Palaeozoic group that wentextinct during the Early Triassic.

Marinetemnospondylamphibians, such as the superficially crocodile-shapedtrematosauridsAphaneramma andWantzosaurus, show wide geographic ranges during theInduan and Olenekian ages. Their fossils are found inGreenland,Spitsbergen,Pakistan andMadagascar.[36] Others, such asTrematosaurus, inhabited freshwater environments and were less widespread.

The first marine reptiles appeared during the Olenekian.[36]Hupehsuchia,Ichthyopterygia andSauropterygia are among the first marine reptiles to enter the scene (e.g.Cartorhynchus,Chaohusaurus,Utatsusaurus,Hupehsuchus,Grippia,Omphalosaurus,Corosaurus). Sauropterygians and ichthyosaurs ruled the oceans during theMesozoicEra.

An example of an exceptionally diverse Early Triassic assemblage is theParis biota, fossils of which were discovered nearParis,Idaho[37] and other nearby sites in Idaho andNevada.[38] The Paris Biota was deposited in the wake of the SSBM and it features at least 7phyla and 20 distinctmetazoanorders, including leptomitidprotomonaxonidsponges (previously only known from thePaleozoic),thylacocephalans,crustaceans,nautiloids,ammonoids,coleoids,ophiuroids,crinoids, andvertebrates.[39] Such diverse assemblages show that organisms diversified wherever and whenever climatic and environmental conditions ameliorated.

Smithian–Spathian boundary event

[edit]
Early Triassic and Anisian marine predators:[36] 1.Wantzosaurus, 2.Fadenia, 3.Saurichthys, 4.Rebellatrix, 5.Hovasaurus, 6.Birgeria, 7.Aphaneramma, 8.Bobasatrania, 9.Hybodontiformes, 10.Mylacanthus, 11.Tanystropheus, 12.Corosaurus, 13.Ticinepomis, 14.Mixosaurus, 15.Cymbospondylidae, 16.Neoselachii, 17.Omphalosaurus skeleton, 18.Placodus

An importantextinction event occurred during the Olenekian age of the Early Triassic, near the subage boundary between the Smithian andSpathian. The main victims of thisSmithian–Spathian boundary event, often called theSmithian–Spathian extinction,[40] were thePalaeozoicdisaster taxa that survived thePermian–Triassic extinction event and flourished in the newly vacatedniches during immediate aftermath of the Great Death;[41]ammonoids,conodonts andradiolarians in particular suffered drastic biodiversity losses,[42][41] which is accentuated, among others, by thecosmopolitan distribution of the ammonoidAnasibirites.[43][44]Marine reptiles, such asichthyopterygians andsauropterygians, diversified after the extinction.[36]

The terrestrialflora was also affected significantly, changing fromlycopod-dominated (e.g.Pleuromeia) during theDienerian and Smithian subages togymnosperm- andpteridophyte-dominated in the Spathian.[45][12] These vegetation changes are due to global changes in temperature andprecipitation.Conifers (gymnosperms) were the dominant plants during most of theMesozoic. Until recently[when?] the existence of this extinction event about 249.4 Ma ago[46] was not recognised.[47]

The Smithian–Spathian boundary extinction was linked to late eruptions of theSiberian Traps,[48][49] which released warminggreenhouse gases, resulting in global warming[50] and in acidification, both on land[51] and in the ocean.[52][53] A large spike inmercury concentrations relative to total organic carbon, much like during the Permian-Triassic extinction, has been suggested as another contributor to the extinction,[54] although this is controversial and has been disputed by other research that suggests elevated mercury levels already existed by the middle Smithian.[55] Prior to the Smithian-Spathian Boundary extinction event, a flatgradient of latitudinal species richness is observed, suggesting that warmer temperatures extended into higherlatitudes, allowing extension of geographic ranges of species adapted to warmer temperatures, and displacement or extinctions of species adapted to cooler temperatures.[43]Oxygen isotope studies on conodonts have revealed that temperatures rose in the first 2 million years of the Triassic, ultimately reachingsea surface temperatures of up to 40 °C (104 °F) in the tropics during the Smithian.[56] The extinction itself occurred during a subsequent drop in global temperatures (ca. 8°C over a geologically short period) in the latest Smithian; however, temperature alone cannot account for the Smithian-Spathian boundary extinction, because several factors were at play.[12][46] An alternative explanation for the extinction event hypothesises the biotic crisis took place not at the Smithian-Spathian boundary but shortly before, during the Late Smithian Thermal Maximum (LSTM), with the Smithian-Spathian boundary itself being associated with cessation of intrusive magmatic activity of the Siberian Traps,[57] along with significant global cooling,[58][59] after which a gradual biotic recovery took place over the early and middle Spathian,[57] along with a decline in continental weathering[60] and a rejuvenation of ocean circulation.[61]

In the ocean, many large and mobile species moved away from thetropics, but large fish remained,[28] and amongst the immobile species such asmolluscs, only the ones that could cope with the heat survived; half thebivalves disappeared.[62] Conodonts decreased in average size as a result of the extinction.[63] On land, the tropics were nearly devoid of life,[64] with exceptionally arid conditions recorded in Iberia and other parts of Europe then at low latitude.[65] Many big, activeanimals returned to the tropics, and plants recolonised on land, only when temperatures returned to normal.

There is evidence that life had recovered rapidly, at least locally. This is indicated by sites that show exceptionally high biodiversity (e.g. the earliest SpathianParis Biota),[37][38] which suggest thatfood webs were complex and comprised severaltrophic levels.

Notable formations

[edit]

References

[edit]
  1. ^Widmann, Philipp; Bucher, Hugo; Leu, Marc; et al. (2020)."Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery".Frontiers in Earth Science.8 (196): 196.Bibcode:2020FrEaS...8..196W.doi:10.3389/feart.2020.00196.
  2. ^McElwain, J. C.; Punyasena, S. W. (2007). "Mass extinction events and the plant fossil record".Trends in Ecology & Evolution.22 (10):548–557.doi:10.1016/j.tree.2007.09.003.PMID 17919771.
  3. ^Retallack, G. J.;Veevers, J.; Morante, R. (1996)."Global coal gap between Permian–Triassic extinctions and middle Triassic recovery of peat forming plants".GSA Bulletin.108 (2):195–207.Bibcode:1996GSAB..108..195R.doi:10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2. Retrieved2007-09-29.
  4. ^Payne, J. L.; Lehrmann, D. J.; Wei, J.; Orchard, M. J.; Schrag, D. P.; Knoll, A. H. (2004)."Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction".Science.305 (5683):506–9.Bibcode:2004Sci...305..506P.doi:10.1126/science.1097023.PMID 15273391.S2CID 35498132.
  5. ^"International Chronostratigraphic Chart"(PDF).International Commission on Stratigraphy. December 2024. RetrievedJanuary 1, 2025.
  6. ^"Global Boundary Stratotype Section and Point". International Commission of Stratigraphy. Retrieved23 December 2020.
  7. ^ab"ICS - Chart/Time Scale"(PDF). Archived fromthe original(PDF) on 2025-01-01. Retrieved2025-01-14.
  8. ^abTozer, E. T. (1965)."Lower Triassic stages and ammonoid zones of Arctic Canada".Geological Survey of Canada Paper.65–12:1–14.doi:10.4095/100985.
  9. ^Kiparisova & Popov (1956)
  10. ^Lucas, S. G. (2010). "The Triassic chronostratigraphic scale: history and status".Geological Society, London, Special Publications.334 (1):17–39.Bibcode:2010GSLSP.334...17L.doi:10.1144/sp334.2.
  11. ^Schneebeli-Hermann, Elke; Kürschner, Wolfram M.; Kerp, Hans; Bomfleur, Benjamin; Hochuli, Peter A.; Bucher, Hugo; Ware, David; Roohi, Ghazala (April 2015)."Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range)".Gondwana Research.27 (3):911–924.Bibcode:2015GondR..27..911S.doi:10.1016/j.gr.2013.11.007.
  12. ^abcGoudemand, Nicolas; Romano, Carlo; Leu, Marc; Bucher, Hugo; Trotter, Julie A.; Williams, Ian S. (August 2019)."Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian -Spathian biotic crisis".Earth-Science Reviews.195:169–178.Bibcode:2019ESRv..195..169G.doi:10.1016/j.earscirev.2019.01.013.
  13. ^Foster, William J.; Heindel, Katrin; Richoz, Sylvain; Gliwa, Jana; Lehrmann, Daniel J.; Baud, Aymon; Kolar-Jurkovšek, Tea; Aljinović, Dunja; Jurkovšek, Bogdan; Korn, Dieter; Martindale, Rowan C.; Peckmann, Jörn (20 November 2019)."Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites".The Depositional Record.6 (1):62–74.doi:10.1002/dep2.97.PMC 7043383.PMID 32140241.
  14. ^Brayard, Arnaud; Vennin, Emmanuelle; Olivier, Nicolas; Bylund, Kevin G.; Jenks, Jim; Stephen, Daniel A.; Bucher, Hugo; Hofmann, Richard; Goudemand, Nicolas; Escarguel, Gilles (18 September 2011). "Transient metazoan reefs in the aftermath of the end-Permian mass extinction".Nature Geoscience.4 (10):693–697.Bibcode:2011NatGe...4..693B.doi:10.1038/ngeo1264.
  15. ^Galfetti, Thomas; Hochuli, Peter A.; Brayard, Arnaud; Bucher, Hugo; Weissert, Helmut; Vigran, Jorunn Os (2007). "Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis".Geology.35 (4): 291.Bibcode:2007Geo....35..291G.doi:10.1130/G23117A.1.
  16. ^Romano, Carlo; Koot, Martha B.; Kogan, Ilja; Brayard, Arnaud; Minikh, Alla V.; Brinkmann, Winand; Bucher, Hugo; Kriwet, Jürgen (February 2016)."Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution"(PDF).Biological Reviews.91 (1):106–147.doi:10.1111/brv.12161.PMID 25431138.
  17. ^Smithwick, Fiann M.; Stubbs, Thomas L. (2 February 2018)."Phanerozoic survivors: Actinopterygian evolution through the Permo-Triassic and Triassic-Jurassic mass extinction events".Evolution.72 (2):348–362.doi:10.1111/evo.13421.PMC 5817399.PMID 29315531.
  18. ^Stensiö, Erik (1932). "Triassic Fishes from East Greenland collected by the Danish expeditions in 1929-1931".Meddelelser om Grønland.83 (3):1–305.OCLC 938169014.
  19. ^Nielsen, Eigil (1936). "Some few preliminary remarks on Triassic fishes from East Greenland".Meddelelser om Grønland.112 (3):1–55.
  20. ^Beltan, Laurence (1996). "Overview of systematics, paleobiology, and paleoecology of Triassic fishes of northwestern Madagascar". In G. Arratia; G. Viohl (eds.).Mesozoic Fishes—Systematics and Paleoecology. München: Dr. Friedrich Pfeil. pp. 479–500.
  21. ^Romano, Carlo; López-Arbarello, Adriana; Ware, David; Jenks, James F.; Brinkmann, Winand (April 2019). "Marine Early Triassic Actinopterygii from the Candelaria Hills (Esmeralda County, Nevada, USA)".Journal of Paleontology.93 (5):971–1000.Bibcode:2019JPal...93..971R.doi:10.1017/jpa.2019.18.
  22. ^Romano, Carlo; Ware, David; Brühwiler, Thomas; Bucher, Hugo; Brinkmann, Winand (2016)."Marine Early Triassic Osteichthyes from Spiti, Indian Himalayas".Swiss Journal of Palaeontology.135 (2):275–294.Bibcode:2016SwJP..135..275R.doi:10.1007/s13358-015-0098-6.
  23. ^Dai, X.; Davies, J. H. F. L.; Yuan, Z.; Brayard, A.; Ovtcharova, M.; Xu, G.; Liu, X.; Smith, C. P. A.; Schweitzer, C. E.; Li, M.; Perrot, M. G.; Jiang, S.; Miao, L.; Cao, Y.; Yan, J.; Bai, R.; Wang, F.; Guo, W.; Song, H.; Tian, L.; Dal Corso, J.; Liu, Y.; Chu, D.; Song, H. (2023)."A Mesozoic fossil lagerstätte from 250.8 million years ago shows a modern-type marine ecosystem"(PDF).Science.379 (6632):567–572.Bibcode:2023Sci...379..567D.doi:10.1126/science.adf1622.PMID 36758082.
  24. ^abStensiö, E. (1921).Triassic fishes from Spitzbergen 1. Wien: Adolf Holzhausen. pp. xxviii+307.
  25. ^Stensiö, E. (1925). "Triassic fishes from Spitzbergen 2".Kungliga Svenska Vetenskapsakademiens Handlingar.3:1–261.
  26. ^Kogan, Ilja; Romano, Carlo (2016). "A new postcranium of Saurichthys from the Early Triassic of Spitsbergen".Freiberger Forschungshefte, Reihe C:205–222.doi:10.5167/uzh-136748.
  27. ^Romano C., Kogan I., Jenks J., Jerjen I., Brinkmann W. (2012)."Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution"(PDF).Bulletin of Geosciences.87:543–570.doi:10.3140/bull.geosci.1337.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. ^abRomano, Carlo; Jenks, James F.; Jattiot, Romain; Scheyer, Torsten M.; Bylund, Kevin G.; Bucher, Hugo (19 July 2017)."Marine Early Triassic Actinopterygii from Elko County (Nevada, USA): implications for the Smithian equatorial vertebrate eclipse".Journal of Paleontology.91 (5):1025–1046.Bibcode:2017JPal...91.1025R.doi:10.1017/jpa.2017.36.
  29. ^Tong, Jinnan; Zhou, Xiugao; Erwin, Douglas H.; Zuo, Jingxun; Zhao, Laishi (2006). "Fossil fishes from the Lower Triassic of Majiashan, Chaohu, Anhui Province, China".Journal of Paleontology.80 (1):146–161.doi:10.1666/0022-3360(2006)080[0146:FFFTLT]2.0.CO;2.
  30. ^Schaeffer, Bobb; Mangus, Marlyn (1976)."An Early Triassic fish assemblage from British Columbia".Bulletin of the American Museum of Natural History.156 (5):516–563.hdl:2246/619.
  31. ^Romano, Carlo (January 2021)."A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes".Frontiers in Earth Science.8: 618853.Bibcode:2021FrEaS...8.8853R.doi:10.3389/feart.2020.618853.
  32. ^Cavin, L.; Argyriou, T.; Romano, C.; Grădinaru, E. (2024). "Large durophagous fish from the Spathian (late Early Triassic) of Romania hints at earlier onset of the Triassic actinopterygian revolution".Papers in Palaeontology.10 (2). e1553.Bibcode:2024PPal...10E1553C.doi:10.1002/spp2.1553.
  33. ^Romano, Carlo; Brinkmann, Winand (December 2010). "A new specimen of the hybodont shark Palaeobates polaris with threedimensionally preserved Meckel's cartilage from the Smithian (Early Triassic) of Spitsbergen".Journal of Vertebrate Paleontology.30 (6):1673–1683.Bibcode:2010JVPal..30.1673R.doi:10.1080/02724634.2010.521962.
  34. ^Bratvold, Janne; Delsett, Lene Liebe; Hurum, Jørn Harald (2018-10-04). "Chondrichthyans from theGrippia bonebed (Early Triassic) of Marmierfjellet, Spitsbergen".Norwegian Journal of Geology.98 (2):189–217.doi:10.17850/njg98-2-03.hdl:10852/71103.
  35. ^Mutter, Raoul J.; Neuman, Andrew G. (2008). "New eugeneodontid sharks from the Lower Triassic Sulphur Mountain Formation of Western Canada". In Cavin, L.; Longbottom, A.; Richter, M. (eds.).Fishes and the Break-up of Pangaea. Geological Society of London, Special Publications. Vol. 295. London: Geological Society of London. pp. 9–41.doi:10.1144/sp295.3.
  36. ^abcdScheyer, Torsten M.; Romano, Carlo; Jenks, Jim; Bucher, Hugo; Farke, Andrew A. (19 March 2014)."Early Triassic Marine Biotic Recovery: The Predators' Perspective".PLOS ONE.9 (3): e88987.Bibcode:2014PLoSO...988987S.doi:10.1371/journal.pone.0088987.PMC 3960099.PMID 24647136.
  37. ^abBrayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles (15 February 2017)."Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna".Science Advances.3 (2): e1602159.Bibcode:2017SciA....3E2159B.doi:10.1126/sciadv.1602159.PMC 5310825.PMID 28246643.
  38. ^abSmith, Christopher P.A.; Laville, Thomas; Fara, Emmauel; Escarguel, Gilles; Olivier, Nicolas; Vennin, Emmanuelle; Goudemand, Nicolas; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Hautmann, Michael; Charbonnier, Sylvain; Krumenacker, L. J.; Brayard, Arnaud (4 October 2021)."Exceptional fossil assemblages confirm the existence of complex Early Triassic ecosystems during the early Spathian".Scientific Reports.11 (1): 19657.Bibcode:2021NatSR..1119657S.doi:10.1038/s41598-021-99056-8.PMC 8490361.PMID 34608207.
  39. ^Iniesto, Miguel; Thomazo, Christophe; Fara, Emmanuel (June 2019). "Deciphering the exceptional preservation of the Early Triassic Paris Biota (Bear Lake County, Idaho, USA)".Geobios.54:81–93.doi:10.1016/j.geobios.2019.04.002.
  40. ^Galfetti, Thomas; Hochuli, Peter A.; Brayard, Arnaud; Bucher, Hugo; Weissert, Helmut; Vigran, Jorunn Os (2007). "Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis".Geology.35 (4): 291.Bibcode:2007Geo....35..291G.doi:10.1130/G23117A.1.
  41. ^abSun, Y. D.; Wignall, Paul B.; Joachimski, M. M.; Bond, David P. G.; Grasby, S. E.; Sun, S.; Yan, C. B.; Wang, L. N.; Chen, Y. L.; Lai, X. L. (1 June 2015)."High amplitude redox changes in the late Early Triassic of South China and the Smithian–Spathian extinction".Palaeogeography, Palaeoclimatology, Palaeoecology.427:62–78.Bibcode:2015PPP...427...62S.doi:10.1016/j.palaeo.2015.03.038.
  42. ^Zhang, Lei; Orchard, Michael J.; Brayard, Arnaud; Algeo, Thomas J.; Zhao, Laishi; Chen, Zhong-Qiang; Lyu, Zhengyi (August 2019). "The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria".Earth-Science Reviews.195:7–36.Bibcode:2019ESRv..195....7Z.doi:10.1016/j.earscirev.2019.02.014.
  43. ^abBrayard, Arnaud; Bucher, Hugo; Escarguel, Gilles; Fluteau, Frédéric; Bourquin, Sylvie; Galfetti, Thomas (September 2006). "The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients".Palaeogeography, Palaeoclimatology, Palaeoecology.239 (3–4):374–395.Bibcode:2006PPP...239..374B.doi:10.1016/j.palaeo.2006.02.003.
  44. ^Jattiot, Romain; Bucher, Hugo; Brayard, Arnaud; Monnet, Claude; Jenks, James F.; Hautmann, Michael (2016)."Revision of the genusAnasibirites Mojsisovics (Ammonoidea): An iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction".Papers in Palaeontology.2 (1):155–188.Bibcode:2016PPal....2..155J.doi:10.1002/spp2.1036.hdl:20.500.12210/34589.
  45. ^Schneebeli-Hermann, Elke; Kürschner, Wolfram M.; Kerp, Hans; Bomfleur, Benjamin; Hochuli, Peter A.; Bucher, Hugo; Ware, David; Roohi, Ghazala (April 2015)."Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range)".Gondwana Research.27 (3):911–924.Bibcode:2015GondR..27..911S.doi:10.1016/j.gr.2013.11.007.
  46. ^abWidmann, Philipp; Bucher, Hugo; Leu, Marc; Vennemann, Torsten; Bagherpour, Borhan; Schneebeli-Hermann, Elke; Goudemand, Nicolas; Schaltegger, Urs (2020)."Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery".Frontiers in Earth Science.8 (196): 196.Bibcode:2020FrEaS...8..196W.doi:10.3389/feart.2020.00196.
  47. ^Hallam, A.; Wignall, P. B. (1997).Mass Extinctions and Their Aftermath. Oxford University Press, UK. p. 143.ISBN 978-0-19-158839-6.Extinctions with and at the close of the Triassic
  48. ^Du, Yong; Song, Huyue; Algeo, Thomas J.; Song, Haijun; Tian, Li; Chu, Daoliang; Shi, Wei; Li, Chao; Tong, Jinnan (1 August 2022). "A massive magmatic degassing event drove the Late Smithian Thermal Maximum and Smithian–Spathian boundary mass extinction".Global and Planetary Change.215: 103878.Bibcode:2022GPC...21503878D.doi:10.1016/j.gloplacha.2022.103878.
  49. ^Paton, M. T.; Ivanov, A. V.; Fiorentini, M. L.; McNaughton, M. J.; Mudrovska, I.; Reznitskii, L. Z.; Demonterova, E. I. (1 September 2010). "Late Permian and Early Triassic magmatic pulses in the Angara–Taseeva syncline, Southern Siberian Traps and their possible influence on the environment".Russian Geology and Geophysics.51 (9):1012–1020.Bibcode:2010RuGG...51.1012P.doi:10.1016/j.rgg.2010.08.009.
  50. ^Romano, Carlo; Goudemand, Nicolas; Vennemann, Torsten W.; Ware, David; Schneebeli-Hermann, Elke; Hochuli, Peter A.; Brühwiler, Thomas; Brinkmann, Winand; Bucher, Hugo (21 December 2012). "Climatic and biotic upheavals following the end-Permian mass extinction".Nature Geoscience.6 (1):57–60.doi:10.1038/ngeo1667.
  51. ^Borruel-Abadía, Violeta; Barrenechea, José F.; Galán-Abellán, Ana Belén; De la Horra, Raúl; López-Gómez, José; Ronchi, Ausonio; Luque, Francisco Javier; Alonso-Azcárate, Jacinto; Marzo, Mariano (20 June 2019). "Could acidity be the reason behind the Early Triassic biotic crisis on land?".Chemical Geology.515:77–86.Bibcode:2019ChGeo.515...77B.doi:10.1016/j.chemgeo.2019.03.035.
  52. ^Ye, Feihong; Zhao, Laishi; Zhang, Lei; Cui, Ying; Algeo, Thomas J.; Chen, Zhong-Qiang; Lyu, Zhengyi; Huang, Yuangeng; Bhat, Ghulam M.; Baud, Aymon (August 2023). "Calcium isotopes reveal shelf acidification on southern Neotethyan margin during the Smithian-Spathian boundary cooling event".Global and Planetary Change.227: 104138.Bibcode:2023GPC...22704138Y.doi:10.1016/j.gloplacha.2023.104138.
  53. ^Song, Haijin; Song, Huyue; Tong, Jinnan; Gordon, Gwyneth W.; Wignall, Paul B.; Tian, Li; Zheng, Wang; Algeo, Thomas J.; Liang, Lei; Bai, Ruoyu; Wu, Kui; Anbar, Ariel D. (20 February 2021). "Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic".Chemical Geology.562: 120038.Bibcode:2021ChGeo.56220038S.doi:10.1016/j.chemgeo.2020.120038.
  54. ^Grasby, Stephen E.; Beauchamp, Benoit; Bond, David P. G.; Wignall, Paul B.; Sanei, Hamed (2016)."Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea".Geological Magazine.153 (2):285–297.Bibcode:2016GeoM..153..285G.doi:10.1017/S0016756815000436.
  55. ^Hammer, Øyvind; Jones, Morgan T.; Schneebeli-Hermann, Elke; Hansen, Bitten Bolvig; Bucher, Hugo (August 2019)."Are Early Triassic extinction events associated with mercury anomalies? A reassessment of the Smithian/Spathian boundary extinction"(PDF).Earth-Science Reviews.195:179–190.Bibcode:2019ESRv..195..179H.doi:10.1016/j.earscirev.2019.04.016.hdl:10852/76482.
  56. ^Marshall, Michael (18 October 2012)."Roasting Triassic heat exterminated tropical life".New Scientist.
  57. ^abZhang, L.; Zhao, L.; Chen, Zhong-Qiang; Algeo, Thomas J.; Li, Y.; Cao, L. (12 March 2015)."Amelioration of marine environments at the Smithian–Spathian boundary, Early Triassic".Biogeosciences.12 (5):1597–1613.Bibcode:2015BGeo...12.1597Z.doi:10.5194/bg-12-1597-2015.
  58. ^Song, Huyue; Du, Yong; Algeo, Thomas J.; Tong, Jinnan; Owens, Jeremy D.; Song, Haijun; Tian, Li; Qiu, Haiou; Zhu, Yuanyuan; Lyons, Timothy W. (August 2019)."Cooling-driven oceanic anoxia across the Smithian/Spathian boundary (mid-Early Triassic)".Earth-Science Reviews.195:133–146.Bibcode:2019ESRv..195..133S.doi:10.1016/j.earscirev.2019.01.009.
  59. ^Zhao, He; Dahl, Tais W.; Chen, Zhong-Qiang; Algeo, Thomas J.; Zhang, Lei; Liu, Yongsheng; Hu, Zhaochu; Hu, Zihao (December 2000). "Anomalous marine calcium cycle linked to carbonate factory change after the Smithian Thermal Maximum (Early Triassic)".Earth-Science Reviews.211: 103418.doi:10.1016/j.earscirev.2020.103418.
  60. ^Song, Haijun; Wignall, Paul B.; Tong, Jinnan; Song, Huyue; Chen, Jing; Chu, Daoliang; Tian, Li; Luo, Mao; Zong, Keqing; Chen, Yanlong; Lai, Xulong; Zhang, Kexin; Wang, Hongmei (15 August 2015)."Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic"(PDF).Earth and Planetary Science Letters.424:140–147.Bibcode:2015E&PSL.424..140S.doi:10.1016/j.epsl.2015.05.035.
  61. ^Song, Huyue; Tong, Jinnan; Algeo, Thomas J.; Koracek, Micha; Qiu, Haiou; Song, Haijun; Tian, Li; Chen, Zhong-Qiang (June 2013). "Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism".Global and Planetary Change.105:7–20.Bibcode:2013GPC...105....7S.doi:10.1016/j.gloplacha.2012.10.023.
  62. ^Hallam, A.; Wignall, P. B. (1997).Mass Extinctions and Their Aftermath. Oxford University Press, UK. p. 144.ISBN 978-0-19-158839-6.
  63. ^Chen, Yanlong; Richoz, Sylvain; Krystyn, Leopold; Zhang, Zhifei (August 2019). "Quantitative stratigraphic correlation of Tethyan conodonts across the Smithian-Spathian (Early Triassic) extinction event".Earth-Science Reviews.195:37–51.Bibcode:2019ESRv..195...37C.doi:10.1016/j.earscirev.2019.03.004.
  64. ^Sun, Y.; Joachimski, M. M.; Wignall, P. B.; Yan, C.; Chen, Y.; Jiang, H.; Wang, L.; Lai, X. (18 October 2012). "Lethally Hot Temperatures During the Early Triassic Greenhouse".Science.338 (6105):366–370.Bibcode:2012Sci...338..366S.doi:10.1126/science.1224126.PMID 23087244.
  65. ^Lloret, Joan; De la Hora, Raúl; Gretter, Nicola; Borruel-Abadía, Violeta; Barrenechea, José F.; Ronchi, Ausonio; Diez, José B.; Arche, Alfredo; López-Gómez, José (September 2020). "Gradual changes in the Olenekian-Anisian continental record and biotic implications in the Central-Eastern Pyrenean basin, NE Spain".Global and Planetary Change.192: 103252.Bibcode:2020GPC...19203252L.doi:10.1016/j.gloplacha.2020.103252.

Further reading

[edit]

External links

[edit]
Cenozoic Era
(present–66.0 Ma)
Quaternary(present–2.58 Ma)
Neogene(2.58–23.0 Ma)
Paleogene(23.0–66.0 Ma)
Mesozoic Era
(66.0–252 Ma)
Cretaceous(66.0–145 Ma)
Jurassic(145–201 Ma)
Triassic(201–252 Ma)
Paleozoic Era
(252–539 Ma)
Permian(252–299 Ma)
Carboniferous(299–359 Ma)
Devonian(359–419 Ma)
Silurian(419–444 Ma)
Ordovician(444–485 Ma)
Cambrian(485–539 Ma)
Proterozoic Eon
(539 Ma–2.5 Ga)
Neoproterozoic(539 Ma–1 Ga)
Mesoproterozoic(1–1.6 Ga)
Paleoproterozoic(1.6–2.5 Ga)
Archean Eon(2.5–4 Ga)
Hadean Eon(4–4.6 Ga)
 
ka = kiloannum (thousand years ago);Ma = megaannum (million years ago);Ga = gigaannum (billion years ago).
See also:Geologic time scale  • iconGeology portal  • World portal

31°57′55″N78°01′29″E / 31.9653°N 78.0247°E /31.9653; 78.0247

Retrieved from "https://en.wikipedia.org/w/index.php?title=Olenekian&oldid=1278933012"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp