TheOlder Dryas[a] was astadial (cold) period between theBølling andAllerødinterstadials (warmer phases),[1] about 14,000 yearsBefore Present, towards the end of thePleistocene. Its date range is not well defined, with estimates varying by 400 years, but its duration is agreed to have been around two centuries.
The gradual warming since theLast Glacial Maximum (27,000 to 24,000 years BP) has been interrupted by two cold spells: the Older Dryas and theYounger Dryas (c. 12,900–11,650 BP). In northernScotland, the glaciers were thicker and deeper during the Older Dryas than the succeeding Younger Dryas, and there is no evidence of human occupation ofBritain.[2] InNorthwestern Europe there was also an earlierOldest Dryas (18.5–17 ka BP 15–14 ka BP).[3] The Dryas are named after an indicator genus, the Arctic and Alpine plantDryas octopetala, the remains of which are found in higher concentrations in deposits from colder periods.
The Older Dryas was a variable cold, dryBlytt–Sernander period, observed in climatological evidence in only some regions,[4] dependent on latitude. In regions in which it is not observed, the Bølling–Allerød is considered a single interstadial period. Evidence of the Older Dryas is strongest in northern Eurasia, particularly part of NorthernEurope, roughly equivalent toPollen zone Ic.
In theGreenland oxygen isotope record, the Older Dryas appears as a downward peak establishing a small, low-intensity gap between the Bølling and the Allerød. That configuration presents a difficulty in estimating its time, as it is more of a point than a segment. The segment is small enough to escape the resolution of most carbon-14 series, as the points are not close enough together to find the segment.[5]
One approach to the problem assigns a point and then picks an arbitrary segment. The Older Dryas is sometimes considered to be "centered" near 14,100 BP or to be 100 to 150 years long "at" 14,250 BP.
A second approach finds carbon-14 or other dates as close to the end of the Bølling and the beginning of the Allerød as possible and then selects endpoints that are based on them: for example, 14,000–13,700 BP.
The best approach attempts to include the Older Dryas in a sequence of points as close together as possible (high resolution) or within a known event.
For example, pollen from the island ofHokkaidō,Japan, records alarch pollen peak and matchingsphagnum decline at 14,600–13700 BP. In theWhite Sea, a cooling occurred at 14,700–13,400/13,000, which resulted in a re-advance of the glacier in the initial Allerød. InCanada, theShulie Lake phase, a re-advance, is dated to 14,000–13,500 BP. On the other hand,varve chronology in southernSweden indicates a range of 14,050–13,900 BP.[6]
Northern Europe offered an alternation ofsteppe andtundra environments depending on thepermafrost line and thelatitude. In moister regions, around lakes and streams, were thickets ofdwarf birch,willow,sea buckthorn, andjuniper. In the river valleys and uplands, to the south, were openbirch forests.
The first trees, birch andpine, had spread into Northern Europe 500 years earlier. During the Older Dryas, the glacier re-advanced, and the trees retreated southward, to be replaced by a mixture of grassland and cool-weather alpine species. Thebiome has been called "Park Tundra," "Arctic tundra," "Arctic pioneer vegetation," or “birch woodlands." It is now in the transition betweentaiga andtundra inSiberia. Then, it stretched from Siberia toGreat Britain, in a more-or-less unbroken expanse.
To the northwest was theBaltic ice lake, which was truncated by the edge of the glacier. Species had access toDenmark and southern Sweden. Most ofFinland and theBaltic countries were under the ice or the lake for most of the period. NorthernScandinavia was glaciated. Between Britain andContinental Europe were rolling hills prolifically populated with animals. Thousands of specimens, hundreds of tons of bones, have been recovered from the bottom of theNorth Sea, called "Doggerland," and they continue to be recovered.
There are many more species found for the period than in this article. Most families were more diverse than they are today, and they were yet more so in the last interglacial. A greatextinction, especially of mammals, continued throughout the end of thePleistocene, and it may be continuing today.
The Older Dryas is a period of cooling during theBølling–Allerød warming, estimated to be from 13,900 to 13,600 years before present (BP),[7] and the estimated ages can vary using different age dating methods. Numerous studies on chronology and palaeoclimate of last deglaciation show a cooling event within Bølling–Allerød warming that reflects the occurrence of Older Dryas. The determination of paleotemperatures varies from study to study depending on the sample collected.δ18O measurements are most common when analyzing Ice core samples whereas the changing abundance pattern of fauna and flora are most commonly used when examining lake sediments. Moraine belts are usually studied in places with palaeoglacier presented. As for ocean sediments, the variations of alkenone levels and faunal abundances were measured to model paleotemperatures in separate studies shown in the following sections.[8]
The NorthGreenland Ice Core Project (GRIP) members drilled an undisturbed ice core from North Greenland (75.1 8N, 42.3 8W).[9] The ice core record showed a cold oscillation between 14,025 to13,904 years BP, which is reflected in the increasedδ18O during this period. This cold oscillation was also observed in earlier ice core records (GRIP[10][11] and GISP2[12][13][14]) drilled in the early 1990s by GRIP members.
A multi-proxy study on late glacial lake sediments of Moervaart palaeolake shows multiple pieces of evidence in various aspects to support Older Dryas.[15]
The lake sediment had an erosional surface prior to Older Dryas suggesting a change to colder climate.[15] Microstructure observation of the sediments shows that fossil soil wedges or frost cracks were observed in the top of Older Dryas deposits,[15] which indicates mean annual air temperatures below −1 to 0 °C and cold winters.[16] This conclusion is also supported by the presence ofJuniperus, which indicates a protecting snow cover in winter. This change is also shown on the records at the Rieme sites on the Great SandRidge of Maldegem-Stekene[17] atSnellegem[18] in NW Belgium, and many other sites in north-western Europe.
δ18O measurements show a decreasing trend inδ18O at the transition to the Older Dryas, which corresponds to the ice core record of precipitation in the northern hemisphere.[12]
Pollen analysis shows a temporary decrease in the pollen levels of trees and shrubs with a short-term increase in herbaceous pollen.[15] The changed pollen pattern suggests an increased abundance of grass as well as a retreat of tree and shrubs. The change in vegetation distribution further indicates a colder and drier climate during this period. As for aquatic plant evidence, both aquatic and semi-aquatic botanical taxa show a sharp decrease, suggesting lower lake levels caused by a drier climate. The drier climate is also reflected by increased salinity indicated by diatom analysis.[15]
The change in Chironomids population also indicates a colder climate.Microtendipes is an indicator of intermediate temperature in Late glacial deposits in northern Europe[19] (Brooks and Birks, 2001). The abundance ofMicrotendipes peaked in the early part of Older Dryas suggesting a cold oscillation. The mollusc data (Valvata piscinalis as a cold-water indicator) suggests a lower summer temperature compared to previous Bølling period.
Recent research onsea surface temperature (SST) for the past 15,000 years in southern Okinawa modelled the Paleoclimate of ocean sediment core (ODP 1202B) using an alkenone analysis.[8] The results show a cooling stage at 14,300 to 13,700 years BP between Bølling and Allerød warm phases, corresponding to the Older Dryas event.[8]
Another study on an ocean sediment core from the Norwegian Trench also suggests a cooling between Bølling and Allerød warm phases. The glacial polar faunal study on ocean sediment core Troll 3.1 based onNeogloboquadrina pachyderma abundances[20][21] suggests that there were two cooling events before Younger Dryas in which one of the events occurred within Bølling-Allerød interstadial and can be associated with Older Dryas.[22]
The study on late-glacial climate change in the White Mountains (New Hampshire, USA) refined the deglaciation history of the White Mountain Moraine System (WMMS) by mapping moraine belts and related lake sequences.[23] The result suggests that the Littleton-Bethlehem (L-B) readvance of the ice sheet occurred between 14,000 and 13,800 years BP. The L-B readvance coincided with the Older Dryas events and provides the first well-documented and dated evidence of Older Dryas.[23]
Another Glacial chronology and palaeoclimate study on moraine suggests a cold oscillation in the second late-glacial (LG2) following the first late-glacial readvance (LG1) at around 14,000±700 to 13,700±1200 years BP.[24] The LG2 cold oscillation around 14,000 years BP can correspond to the cooling of Greenland Interstadial 1 (GI-1d-Older Dryas)[9] that happened around the same time period, which is the first chronological evidence that supports the presence of Older Dryas in the Tatra Mountains.
Older Dryas species are usually found in the sediment below the bottom layer of the bog. Indicator species are the Alpine plants:
Grasslands species are the following:
A well-stocked biozone prevailed on the Arctic plains and thickets of the Late Pleistocene. Plains mammals were most predominant:
So much meat on the hoof must have supported large numbers ofCarnivora:Ursidae:
The sea also had its share of carnivores; their maritime location made them survive until modern times:Phocidae:
Of theCetaceanOdontoceti, theMonodontidae:
Of theMysticetianEschrichtiidae:
The top of the food chain was supported by larger numbers of smaller animals farther down, which lived in the herbaceous blanket covering the tundra or steppe and helped maintain it by carrying seeds, manuring and aerating it.
Eurasia was populated byHomo sapiens sapiens (Cro-Magnon man) during the lateUpper Paleolithic. Bands of humans survived by hunting the mammals of the plains. In theNorthern Europe they preferred reindeer, inUkraine thewoolly mammoth. They sheltered in huts and manufactured tools around campfires. Ukrainian shelters were supported by mammoth tusks. Humans were already established acrossSiberia and North America.[25]
Two domestic dogs (Canis familiaris) have been found in late Pleistocene Ukraine and were a heavy breed, similar to aGreat Dane, perhaps useful to run downElephantidae. The large number of mammoth bones at campsites make it clear that even then, the Elephantidae in Europe were approaching the limit of their duration. Their bones were used for many purposes, one being the numerous objects of art, including an engraved star map.[citation needed]
Late Upper Palaeolithic culture was by no means uniform. Many local traditions have been defined. TheHamburgian culture had occupied the lowlands and Northern Germany before the Older Dryas. During the Older Dryas, contemporaneous with the Havelte Group of the late Hamburgian, theFedermesser culture appeared and occupied Denmark and southern Sweden, following the reindeer. South of the Hamburgian was the longstandingMagdalenian. In Ukraine was the Moldovan, which used tusks to build shelters.